Category Archives: Gear Reviews

This is where I will post all of my reviews on astro gear

SharpStar 15028HNT

After months of trying to get my trusty Sky-Watcher Quattro F4 to work with the ASA 0.73x reducer I decided to go all in on an F2.8 astrograph. After doing some research I stumbled across the SharpStar 15028HNT F2.8 Hyperboloid Newtonian Reflector from my local supplier 365Astronomy.

After toying with the idea and speaking to my good friend Nick from Altair Astro and with the idea of going back to a refractor, I decided that I could not go back to slower than F4 and I wanted something that in essence would work with a bigger sensor than my QHY183M, and the Sharpstar looked like it could work for me, so I placed my order with Zoltan from 365Astronomy and collected it the following day.

Unboxing the scope, I was like a young child at christmas, the scope came with a very sturdy protective hard case and removing the scope out of the case you could immediately feel that a lot of time and effort had gone into producing the 15028HNT.

Aperture: 150mm
Focal Length: 420mm
Focal Ratio: F2.8
Weight: 6kg
Tube Material: Carbon Fiber

With the scope unboxed I started to fit my equipment onto the scope. In order to fit my Sesto Senso I had to rotate the focuser 90 degrees clockwise due to the telescope mounting rings, this is when I noticed an isue that one of the grub screws on the focuser would not tighten and I needed to stop the backlash, fortunately there’s another grub screw on the other side that tightened and stopped the backlash.

Before I attached my imaging equipment, I had to ensure that the telescope was collimated, so I stumbled across the collimation guide which after speaking with my good friend Terry Hancock over at Grand Mesa Observatory who was also evaluating the same scope, we both agreed that the colimation guide wasn’t very well written as it mentioned nothing about collimating the primary. One thing that it mentioned is to remove the corrector, Sharpstar include a tool for you to remove the mounting plate and corrector, but here is a word of advice……..remove this when the telescope is cold, take that advice from someone who tried to remove it whilst it was warm!

I performed a laser collimation with my Concenter Eyepiece to check the secondary, and then a laser to check the primary, now the collimation guide says to remove the corrector, I have done validation with both the corrector removed and the corrector in place, and it made no difference whatsoever, so my opinion is to leave the corrector in place.

With the scope closely collimated, I mounted my StarlightXpress Filterwheel and Camera which with the 15028HNT is an M48 thread for the gear to screw onto.

I will post some images as soon as I have completed some, the weather has been pretty poor (probably because I bought a new scope), but the frames I have got so far are very sharp, pinpoint and I can honestly say I have never seen images come directly off the camera so sharp.

My field of view with the QHY183M is around 1.21 Arcsec/Pixel which gives me a FOV or around 1.81°x1.2° and I love the difraction spikes being at 45 degrees compared to the 90 degrees on the skywatcher and I already have a pretty full target list for this scope ready to go this season.

Apart from the couple of product issues I have experienced (Grub screw on focuser and tube clamp thumbscrew being threaded) I am extremely happy with the scope, it is performing really well and here are a couple of work in progress images that I have started

Dark Shark Nebula Moscaic Panel 1 – 51x300S in Red, 25x300S in Green and Blue
Elephant’s Trunk – 51x300S in 6nm Ha
M45 – Mosaic Panel 1 – 12x150S in R, G and B

After a few weeks, the telescope has held collimation very well, I have not had to perform any re-collimation, I will re-evaluate this in the much colder months of winter.

I am so happy with the scope that I am actually considering a second one for an OSC Camera with a bigger sensor.

StarlightXpress Lodestar X2

I was lucky enough that Terry from StarlightXpress sent me a Lodestar X2 for me to test to see how well it performed against my existing guider camera, so it only seemed fair that I provide my feedback via an equipment review. Many who know me know I have been using a QHY5L-II camera as a guide camera for a few years now but after seeing a few of my fellow astrophotographers using the Lodestar cameras it seemed silly not to try one out.

In comparison to the QHY5L-II the Lodestar X2 is a true CCD camera and not a CMOS camera, so immediately this would yield some higher sensitivity in what stars can be selected. One thing that is immediately noticable between the cameras is the Lodestar X2 is longer than the length of the QHY5L-II.

Just to add some more comparisons:

QHY5L-IILodestar X2
SensorAptima MT9M034Sony ICX829
Sensor TypeCMOSCCD
Sensor Size6.66mmx5.32mm6.47mmx4.81mm
Pixel Size3.75um8.2umx8.4um
MPX1.2mpx0.4mpx
QE74%77%
Length54mm85mm
Weight45g50g
Cost (27 Aug 2019)£175£378

The first time I used the Lodestar X2, I was shocked at how many stars were in the field of view, for the same 2 second exposure I usually guide at there was a lot of stars to choose from, far more than I could see with the QHY5L-II, there is probably a number of reasons for this, higher sensitivity of the CCD Sensor, slightly higher QE, but also the FOV, with the QHY5L-II on my 8″ Quattro with a 0.73x reducer it would yield a field of view of 0.47°x0.35°, the Lodestar X2 on the other hand would yield a field of view of around 0.6°x0.48°.

Since I use PHD2 for guiding one thing that was immediately apparent was the built in driver for StarlightXpress cameras, I asked Terry which would be the best to use, he said either, it makes no difference, so I tested this and he was right, the in built driver and ASCOM driver produced the exact same result, I remember specifically with the QHY5L-II that QHY recommend you do not use the in built driver and always use the ASCOM driver. When firing up the Lodestar X2 in PHD2 I built my dark frame library in order for me to see how good the ICX829 was for noise, so I compared the 2 second exposures and there was very little difference between using a dark frame library versus not using one, the QHY5L-II definitely requires a dark frame library in PHD2 that’s for sure!

My first night of guider testing seen a little bit of odd behavoiur with the Lodestar X2, since I am using the Pegasus Astro Ultimate USB Hub, I had everything connected in there, including the QHY183M which is a USB3.0 camera albeit connected to a USB 2.0 hub. When the camera was downloading the image the Lodestar would display an array of dots on the screen. Terry confirmed that it was an indication that it was dropping down to USB 1.0 speed. It turns out that when I did the same thing with the QHY5L-II as the guider camera, the QHY5L-II would actually go unresponsive according to PHD2, so I moved the imaging camera to a dedicated USB 3.0 port on the Intel NUC and never had a repeat of the issue on either camera.

PHD2 has no issues picking up and selecting a guide star, there’s plenty of stars to choose from

Conclusion
The Lodestar X2 is awesome as a guide camera, it works extremely well, very sensitive, the only drawback in my opinion is price, at over double the price of the QHY5L-II camera maybe a tad out of some folks price range.

The source to the halo around bright stars

When I moved to the Sky-Watcher Quattro telescope I noticed some bizzare halo’s around bright stars in my images, this was evident in both my Atik 383L+ CCD Camera as well as my QHY183M ColdMOS Camera when using the Quattro 8-CF at F4, if you browse my galleries you will see what I mean, and it was more noticable in my Narrowband images. Below is one of my recent images where you can see the halo around Magnitude 3.9 star 15 Mon in the Christmas Tree Cluster / NGC2264.

I contacted Baader back in February 2019 since all of my filters were Baader, and I noticed that the Halo was present in all of my filters but significantly less in Red, but more prevalent in Narrowband filters, so the logical cause would be the filters. Baader immediately dismissed this to be the fault of their filters and suggested that my Coma Corrector be the root cause.

Not convinced that the Coma Corrector was causing the issue, I did some research online and came across a brilliant page on the Astronomik website where they claim to have resolved the majority of the Halo issue, and after reading the following line from the page I was convinced the filters were my issue:

In recent years very fast optical systems have become popular for imaging. The energy in a filter induced halo grows exponentially as the f-ratio decreases. Additional to this, the smaller the FWHM band pass of the filter, the stronger the halo.

The above line described my issue perfectly so I mentioned this to Baader who again dismissed the possibility of it being their filters and again put the blame firmly to my optical train. Again not happy, I contacted Astronomik and Eric emailed me back very promptly and offered to send me out one of their 6nm Ha filters to test. A few days ago the filter arrived and I was able to perform some testing against the Baader filter also for comparison on the same star.

Since the star in my image above was of magnitude 3.9, I wanted to find something similar, so I found star Alhaud VI and proceeded to obtain 15x300S Exposures for each filter, and here are the results:

Astronomik 6nm HA filter, 15x300S with Darks and Flats applied
Baader 7nm Ha filter, 15x300S with Darks and Flats applied

So as you can see the Baader filter shows a high amount of Halo around the bright star and the Astronomik filter does not, now if this was something to do with the rest of the optical train there would be evidence in the Astronomik filter also.

Now I agree there will be some reflection in the optical train, all that glass in the coma corrector, the glass on the camera etc, so I thought I would have a look at both images in a bit more detail, zoomed in on the stars there is what appears to be a slight halo in the same place on both images:

Astronomik 6nm Ha Filter
Baader 7nm Ha Filter

So both filters show the Inner Halo which in my opinion would not be visible in an image, but again clearly the Baader filter has some reflection issues happening as you can clearly see two additional Halos. The interesting thing about all three Halos is that the central one visible in both filters has no relationship to the distances between the other two in the Baader, however the two outer Halos on the baader are the same distance apart as the middle halo is from the star, so clearly this is some sort of reflection.

Conclusion:
Astronomik have done a fantastic job at eliminating Halo artifacts around bright stars, clearly the Baader filters are causing major Halo artifacts because if this was the optical train then it would be evident in the Astronimik filters also, I suspect that the Baader filters are not optimised for faster focal ratio imaging systems. I have provided this information to Baader and await a response from them.

Good job Astronomik Filters

PrimaluceLabs Sesto Senso Robo Focuser

Getting the best FWHM in your images is something that I have struggled with when imaging a whole night. As the temperature fluctuates, so does the FWHM in your images, this was a problem I had with my images at the beginning of the season. I looked around and the only focuser I could find was not a stepper motor focuser, so it didn’t offer predictable results. Since I am using the stock focuser for my Sky-Watcher Quattro 8-CF (and it’s a solid focuser at that), I did not really want to change focuser mid-season, so I did some research and landed upon the PrimaluceLabs Sesto Senso ROBO Focuser.

Now my expectations here were pretty low since I tried an electronic focuser and tried to use some sort of Auto Focus routine without any length of success, but when the Sesto Senso arrived I was excited as I looked at it and thought to myself that this would do the job.

Out of the box the Sesto Senso is very solid, good quality feel to it, and came with a bunch of different adapters for different focusers, one specifically for my Sky-Watcher Focuser too. I read the installation instructions a couple of times and set to work on upgrading my scope.

Installation
Installation was fairly easy and straight forward, I removed the slow focusing knob off the focuser and attached the adapter for the Sky-Watcher that came with the Sesto Senso, so within 30 minutes it was successfully fitted. And I can still manually focus with the fast focusing knob on the other side of the focuser:

After all the physical installation was done, I then needed to install the software on the observatory PC, since I image using Sequence Generator Pro, I proceeded to install Sesto Software and the ASCOM driver so that SGPro could talk to the focuser, again this was relatively simple to do. Once this was completed it was important to load up the Sesto software and perform a calibration so that the Sesto Senso knows where the most innner and outer focus positions are.

Setting the Focus Control module in SGPro was a breeze, for this I used a Focusing Mask to get a rough focus and set that point for all of my filters, now the following setting are what works for me really well, but basically:

  • I use 20 data points to achieve focus.
  • Step size between focus points is 20
  • Focus frame is 10 seconds for all filters, this is to get a better normalised focus frame, I was finding 5 seconds was too short and gave un-predictable results.
  • I set it to re-focus after a temperature change of 3.0 Degrees C since the last focus.
  • I re-focus on any centering action which is useful if you use a mirrored telescope like me.
Sequence Generate Pro Auto Focus settings
You can see here that my start off point is 50146, so it will go 10 points either direction of this point at 20 steps per point

I have now been using the Sesto Senso for a few months now and it has not failed me, I maintain a good FWHM value throughout the night and it an awesome piece of kit, well done Primaluce Labs. Is there anything that I would change about it?

Only one thing…….It requires separate power, which in all honesty I can understand why but if I could run the power through USB that would be a bonus.

One problem I have with the Auto Focus routine in SGPro is that in the image sequence, since my filters for LRGB are all parfocal, but my Narrowband filters are not, I only wish to focus on a filter change if it’s going from LRGB to Narrowband to LRGB or Narrowband to Narrowband, unfortunately SGPro doesn’t have that intelligence in the sequence, I am trying to persuade Jared to have that in there to make life that bit more simple.

Anyway I hope this review inspires you to consider this awesome piece of kit, it’s certainly helped me!

Pegasus Astro Ultimate PowerBox

I spent a lot of time looking at PowerBoxes/USB Controllers, the late Per Frejvall had developed a very nice Remote USB Hub but of course with the passing of Per, these are no longer available. I looked at two hubs, the HitechAstro Mount Hub Pro abnd the one I settled for was the Pegasus Astro Ultimate PowerBox.

Unboxing the PowerBox I was pleased with the build quality, they even ship mounting brackets for you to be able to mount it onto your setup, here’s an image of mine mounted on top of my Sky-Watcher Quattro:

Pegasus Astro Ultimate PowerBox on Imaging Setup

I loaded up the software onto the observatory PC and again pleasantly surprised at how easy it was to get started and configure the names of the powered devices connected as well as names for each of the dew heaters, in the following image you can see my power connected devices and my dew heater for my guider camera:

Screenshot of Control Software

I configured the software to automatically power my devices the moment the unit is switched on, so what do I have connected to the PowerBox?

  • QHY5L-II Guide Camera
  • StarlightXpress USB Filterwheel
  • PrimaluceLabs ROBO Focuser
  • EQ8 Pro Mount PC-Direct Cable

I didn’t connect my QHY183M at the moment as I discovered that during image download it seemed to cause a timeout on the QHY5L-II Camera, I have raised a ticket with Pegasus Astro on this one. From a Power perspective, I only have my QHY183M and my Rear Fan assembly/heater connected as I currently do not have the power cable to connect directly to the hub for the EQ8 Pro (On Order). There is also a temperature sensor for the ultimate version, which works well as an interface for Sequence Generator Pro and my Auto Focuser routines.

I have been using the Hub now for a good few months, I am pretty happy with it, am I totally happy you might ask, well to be honest there’s a couple of niggly things that I have emailed Pegasus Astro about (awaiting a response):

  • Voltage. I am running 13.8V regulated bench power supply capable of delivering up to 15A which is powering the hub, however when devices such as the camera, dew heater, fan assembly are all running, the voltage level drops down to around 12V according to the software, I would not expect this to do so, I would expect it to remain 13.8V. My EQ8 Pro mount is powered by the same supply (but not through the hub currently) and during slew the voltage in the software does not change, so it’s obviously something being caluclated within the hub somewhere.
  • Issue with USB3 Camera (QHY183M) is still outstanding
  • When you set the power to the dew heater for example I always run it at 170, however when the software restarts you have to manually go and set this again
  • Ability to reboot or “Disconnect” a specific USB Port remotely would have been nice.

The main reason I wanted something like this was the ability to reboot the hub remotely, with standard USB Hubs this is not possible, as above, I would love to have a bit more granularity on this and have it on a per USB port but it works well for me right now.


QHY183M Review – Part 2

As promised, now that I have done some imaging with my new QHYCCD 183M Mono ColdMOS Back Illuminated camera here’s the second part of my review on the camera.

Pixel size:- The pixel size on the 183M is 2.4um which I absolutely love, on my Sky-Watcher 8 Inch Quattro F4 the camera gives me a field of view of 0.62 Arcseconds/Pixel, which is a fantastic resolution, I remember when I had my Atik 383L+ and my Astro-Tech AT8RC F8, that offered me a resolution of around 0.63 Arcseconds/Pixel, so I am now imaging at almost the same field of view but at F4 and at 20mpx, but let’s just put that into comparison on the same scope, the first image below is IC434 taken with the Atik 383L+ on the Quattro, and the second image below is taken with the QHY183M on the same telescope, you can see what impact it has on the field of view:

FOV on Atik 383L+ with 8″ Quattro F4

FOV on QHY183M with 8″ Quattro F4

As you can see from the above two images the difference in the field of view due to the chip size.

Camera Sensitivity:- Since moving to the QHY183M I have had to make changes to how I image, having owned the Atik 383L+ for a good few years, I got used to imaging with it, so when I moved to the QHY183M I suddenly noticed that this camera was quite a bit more sensitive, the first image above consists of 300 second frames for the LRGB whereas the second image consists of just 150 second frames, yes 150 second frames!!!

When I first started imaging M81/M82 with the QHY183M, I immediately started with 300 Second frames, I ended up with the same amount of 300 second frames that I had with the Atik 383L+ but I just could not process it, after further analysis I noticed then that the lights were severely clipped, to put this into perspective, below is the Sequence Generator Pro Histogram for both the 300 second exposure (left) and the 150 second exposure (right)

As you can see the histogram on the left for the 300 second exposure is severly clipped on the right side of the histogram indicating that the exposure was too long, the histogram on the right for the 150 second exposure is a lot better, there is still some slight clipping happening but this was a luminance frame, this clearly indicates that the 183M is much more sensitive than my previous CCD imager.

The following two images were produced with the 183M, firstly IC434 consists of 19×300 Second Exposures in RGB and the Second Image of The Owl Nebula consists of 27×300 second exposures in RGB + 25x600S in Ha

Software Integration:- As you probably know already, I use Sequence Generator Pro for my image acquisition and the integration with the camera has been pretty seemless, the ASCOM platform driver works pretty well, and I have the camera set to the default gain and offset setting that QHY have provided which is 16 of Gain and 76 for offset:

UV/IR Sensitivity:- I have read online that the 183M is a little bit sensitive to UV/IR Light, so I asked the guys at QHYCCD about this abd they informed be that the window on the senor is straight clear glass, so it also lets in UV/IR Light, which for me is not an issue as all of my Baader filters are UV/IR Blocked anyway, but it is something to consider if I ever change filters.

Conclusion
The camera has performed way beyond my expectations, had to change some of my approaches to image acquisition but that was to be expected, I am extremely happy with the camera and look forward to getting more data to compliment the Luminance for M81/M82 in the not so distant future.

If you are considering the QHY183M as an imaging camera, and would like to discuss, then feel free to reach out to me.

Clear Skies

QHY183M Review – Part 1

After much waiting (due to delays on Sony Sensors) I have finally received my QHY183M ColdMOS camera from QHYCCD which I collected from ModernAstronomy last weekend, so I apologise for the really bad weather we’ve had.

As you all know, for the past few years I have been using an Atik 383L+ Mono 8.3Mpx CCD Camera, so when QHY announced the QHY183C I immediately asked them if there was going to be a mono version to which they said….Yes!

So firstly you might ask why I chose the QHY183 camera?  Well the simple reason for this is that it offered me a higher pixel resolution for almost the same field of view that my Atik 383L+ offered, however there were other factors that swayed my decission:

  • Back Illuminated Sensor
  • High Quantum Efficiency (QE)
  • Optimal Cooling
  • Lightweight

So let’s first of all talk about the back illumination and what this means to astrophotography.  Typically CMOS sensors are orientated with the light receiving surface and the transistors/wiring facing the light, so when imaging it is possible to get reflections of light bouncing off the circuitry, with a back illuminated sensor, all the circuitry are on the underside of the surface that faces the light, thus elliminating the possibility of reflections bouncing off the transistors, the following image shows this in a bit more detail (Courtesty of QHYCCD):

So obviously the more light we can get to the imaging surface the better it is for our data acquisition, every photon counts right?!

The QHY183M has an extremely high Quantum Efficiency (QE) of 84% which means that more data is absorbed by the chip than my previous imaging camera which had a QE of just over 60% based on the KAF-8300 sensor from Kodak.

One of the first things I tested when I unpacked the camera was the cooling system, I wanted to know how good the cooling system was, QHY stated between 40-45C Delta, so considering the outside temperature was +5C I managed to get the camera down to -41.6C which was a delta slightly above the 45C promised by QHY, so considering I typically image at -20C this now means I can image when the outside temperature at night is even as high as +25C which typically doesn’t happen in the UK.  I also noticed that the QHY183M uses less current than my 383L+ did to get ot the same temperature, so another bonus of less power requirement.

Weight is always an astrophotographers enemy, so it was much to my delight that the QHY183M weighs a lot less than my ATIK 383L+ did, the 383L+ weighed in around 700g and the QHY183M weighs in around 450g.

Out of the box
My first impression of the camera is that it is well built, a bit more of a compact design in comparison to my previous camera, has a USB3.0 connector (even though I am still using USB 2.0) and has a port to connect a dessicant tube to if required.

Software Installation
Driver installation was relatively straight forward, if you are using a third party imaging program like Sequence Generator Pro, make sure you install the ASCOM drivers so that SGPro can then speak to the camera.  In SGPro there are options for Gain settings, according to QHY the unity gain for the 183M is 11, so I have mine set to this value in SGPro.

Image Download Speed
After completing my dark frames library, I noticed that the download speed from Camera to Observatory PC was much much faster than my Atik was, even though I am using the same USB 2.0 Hub, on the Atik it could take anywhere up to 20 seconds to download the image at 1×1 binning, obviously the QHY183M is a much bigger sensor at 20mpx, however the image download time is circa 5 seconds which reduces image acquisition time greatly for multiple exposures.

Dark Frames
My dark frame library is completed, below are four different exposure times, 90, 180, 300 and 600 seconds, each image consists of 25 frames combined using PixInsight

90 Seconds:

180 Seconds:

300 Seconds:

600 Seconds:

As you can see the darks are really good, if you stretch out the images you will see the AMP glow on the right side of the image, this will be removed in dark frame subtraction and is a common artifact on all CMOS based imagers.

I did have the occasional icing issue on my 383L+, however the QHY183M has a heated optical window, so time will tell on how often I will need to use the dessicant tube.

Conclusion so far…before imaging

Pros:

  • Excellent design.
  • Lightweight.
  • Very predictable cooling system cools to -45C below ambient.
  • Cooling system is much quieter than my previous camera
  • Less current draw versus my previous camera.
  • Easy software installation.
  • Very fast download speed of around 5 seconds per frame at 1×1 Binning.
  • Very high QE of 84%

Cons:

  • AMP glow, I am probably being a bit mean considering all CMOS based cameras are subjected to this.
  • M42 thread on the camera is not long enough for the StarlightXpress EFW, I had to place a piece of card between the camera and the Filterwheel otherwise the camera just keeps spinning round and doesn’t tighten.
  • There’s no electronic shutter like my previous camera, which means for my dark frames it has to be completely dark in the observatory

I hope this review is beneficial to you all, especially if you are considering either the 183C or the 183M.  I will post part 2 of my review when I have actually got it all focused and acquired some photons from the sky.

Atik 383L+ Cooled Mono CCD Imaging Camera

After owning the Atik 383L+ Mono CCD Camera for over three years now, I would say I am definitely qualified to write a review.  I bought my camera back in 2013 when I lived in Ireland it was during the time when I transitioned from imaging with a Cooled and Modified DSLR Camera to Mono CCD Imaging.  At the time I was considering one of two cameras, the QHY8 Mono CCD and the Atik 383L+ Mono CCD, at the time the QHY was slightly cheaper but the Cooling Delta and Readout Noise was better on the Atik despite the fact that they both used the Kodak KAF8300 chip.

When I first received my camera, I was thoroughly impressed with the build quality, the red aluminium casing gave it a really professional feel to the camera and came complete with USB Cable, 12v Cigarette Power Cable and Software Media, all packaged really well, and when taking the camera out of the box, you could tell that Atik had put a lot of effort and consideration into their build quality and finish of the camera.  So far so good!

People quite often ask me how big the camera is, it just so happens that at the time I got my camera, I took a picture of the camera next to a AAA battery, just for comparison you can see that it is a fairly compact camera and at around 700g wasn’t too heavy either.

Because I couldn’t wait until my filterwheel had arrived, I wanted to test the camera functionality, so I installed all of the software onto my desktop PC and plugged the camera in.  At the time I got the camera, I was using Nebulosity to perform my image acquisition, so the first thing to do was build my dark frames at my desired temperature of -20C.  The dark frames showed very little in the way of noise which I was extremely happy with.  The installation of Drivers and  ASCOM Platform drivers all went perfectly without any problems, and Nebulosity worked well using the ASCOM Camera platform driver.

Once my filterwheel had arrived from StarlightXpress it was time to get the camera aquainted with the telescope, and at the time I was using an Astro-Tech 8 Inch Ritchey Chretien telescope on my already 3 Year Old NEQ6-Pro mount. Mating the camera to the filterwheel was relatively easy, I placed a thin cork shim onto the male thread of the filterwheel and screwed the camera on and adjusted the rotation of the filterwheel adapter to make sure the camera was at the right angle, I used the rubber shim to stop the metal to metal binding which makes it difficult to remove later, adding in the cork shim still allows it to be tightened up.

Since I had built my dark frame library, it was time to build my flat frames library, for this I used an EL Panel, one of the things I noticed was that a short exposure time of <1.0 seconds left a dark area to the lower right of the frame, after speaking with Atik they confirmed it was just the mechanical shutter, so I had to reduce the light on the EL Panel in order to increase the exposure time to get around this, other than that my flat frame library was built.

My first light for the camera was going to come from NGC7635 – Bubble Nebula in Narrowband, and whilst I must admit my imaging has come a long way since I took this picture, it is what it is and I was very happy with the results of sensitivity the camera delivered especially as this image is only 3x1800S frames for HA, OIII and SII.  Since I have had the camera, I have produced a substantial number of images to date and continue to do so using my Atik 383L+ Mono CCD Camera.

So how does Atik fair with me as a company, well it just so happens that I had to send my camera away for service due to excessive moisture causing Ice Crystals during cooling, I filed a support ticket with them and within a few days I got my camera back completely moisture free, I do not blame the camera here for the moisture, but more the fact that when I had my observatory located 15 miles away, I used to forget to switch the camera power off which would push a lot of moisture through the camera.  But the service from Atik was simply awesome.

Here’s a picture of the camera still used today attached to my F4 Quattro, I use Sequence Generator Pro for all my target acquisitions today but still using the ASCOM Camera Driver which is extremely stable

Just to recap why I am happy with the camera:

  • Build Quality
  • Size and Weight
  • Software Deployment
  • Sensitivity
  • Quietness of the camera

What could have been better?

  • Power cable – This could have been a stretchable power cable as I did run into a problem recently where the cable became snagged and it ripped the wire out of the jack plug that plugs into the camera, fortunately it didn’t damage the plug in port of the camera
  • Heated chip chamber, most cameras seem to have this now
  • Different colour options – I would have loved the camera in Blue or Green

You can see many of the images I have taken with this camera in my CCD Image Gallery Section here

 

 

Skywatcher Quattro 8-CF Imaging Newtonian

After much deliberation and conversations back and forth with Bernard at Modern Astronomy, I finally decided to go for the Skywatcher Quattro 8-CF 8” F4 Reflector, there was a number of factors that helped me reach this decision, most of it was the British weather being so unpredictable that I needed to get as many photons for my images in the shortest available time.  I was used to imaging at F7.5 that the F4 was going to give me significantly faster optics, I also opted for the Carbon Fiber version purely from a thermal expansion perspective as it was going to perform better than the steel tube version.  I also opted for the 8” as the Native focal length of 800mm suited me perfectly, and I plan on getting the Keller reducer to bring it down to 560mm @ F2.8.

Setup and Collimation
When I received my telescope and optically matched Aplanatic Coma Corrector, I was impressed with the build quality of the scope itself, internal baffles to boost contrast as well as eliminate stray light, and the focuser is pretty sturdy for a stock focuser, and quite easily handles the weight of my CCD and Filterwheel.  I mounted the telescope next to my Guide scope on my Skywatcher EQ8, I wish they had provided a Losmandy plate with the telescope, but the Vixen style bar still worked out well.  After balancing the scopes on the mount I was ready to check the collimation, for this I used my Farpoint Collimation Kit, firstly the laser to ensure it hits the centre spot of the primary, and the laser return reached the centre point of the laser collimator itself, the adjustments required were very minor.  After this I verified the collimation with the Farpoint Cheshire and it verified that the collimation was correct, only thing left to do was a star test, for this I used a 10mm Eyepiece and a fairly bright defocused star, the star was spot on, I could see all the concentric rings.  I then proceeded to perform the same star test with the CCD and the Aplanatic Corrector to verify, which of course it did.

Scope Details:
Focal Length: 800mm
Apperture: 8 Inch
Focal Ratio: F4
Tube Composition: Carbon Fiber
Focuser: 2″ Dual Speed Linear Power Focuser

First light
My first target for 2016 is the Iris Nebula, my first set of frames came through and for a 5 minute exposure I was impressed with how much data I had collected, data that would have taken over 15 minutes to collect on the F7.5 refractor I now use as a guide scope, I managed to finish a target off within a few days of imaging rather than over a multitude of nights

I have also not had to re-collimate the scope or adjust the focuser on the scope over the few weeks I have had it, so overall I am above and beyond happy with my decision and I am now able to image targets in a shorter timeframe which in the UK you have to grab every clear sky you can

A few months on
I have had to re-collimate the scope 0 times, even after removing the primary mirror assemply for cleaning, the focuser is still rock solid and holds the camera gear extremely well.   I have made an addition to the scope, I have added a fan system to the rear of the primary mirror, the fan also has some nichrome wire which allows the air being blown around the primary to be just above the dew point which prevents dew forming on the primary and believe it or not the secondary also, even in high humidity sessions.

Build Quality: Extremely pleased with the build quality of the scope, even the focuser is sturdy and holds all of my gear really well

Collimation: Extremely easy with the right tools, it has required no further collimation in the months that I have now owned the scope

Improvements: Could have come with a fan assembly, most of the other F4 scopes from other vendors do

Conclusion
After months of usage, I have produced some really good images in short timeframes due to the fast F4 ratio, I am looking forward to using this scope again next season with 3nm NarrowBand filters and possibly the Keller Reducer to bring it down to F2.8