Tag Archives: Deep Space

ZWO ASI2400MC Pro Full Frame 24mpx camera review

I was lucky enough for 365Astronomy to offer me one of the ZWO ASI2400 full frame cameras to test and write a review, so obviously I jumped at the chance, and within a couple of days I was successfully imaging and acquiring data with it, so firstly what is the ASI2400?

The ASI2400MC Pro is a full frame 24mpx camera that utilises the Sony IMX410 back illuminated sensor, ZWO produced a similar camera before which was the ASI128MC Pro (24mpx) and they also have the ASI6200 (62mpx), so what are the differences between the cameras?

ASI2400MCASI128MCASI6200MC
Image SensorIMX410IMX128IMX455
Pixel Size5.945.973.76
Full Well Capacity100ke76ke51.4ke
Cooling Delta-35C-35C-35C
Resolution6072×40426032*40329576×6388
ADC14-Bit14-Bit16-Bit
Read Noise1.1e-6.4e2.5e1.2e-3.5e
DDR Buffer256MB256MB256MB
QE >80%>53%>80%
FPS (Video)852

If we compare the ASI2400 and the ASI128 since they have similar pixel sizes and offer almost a matching resolution, but the ASI2400 clearly is a better camera, with a higher full well capacity, this means that it takes a lot more to saturate out the colours around bright stars for example, but also a big increase on the quantum efficiency going from 53% to >80%.

Now the first thing I noticed was that the ASI2400 was only slightly cheaper than the ASI6200, but the ASI6200 is offering a much higher resolution, so why would people not just go for the ASI6200? Well it comes down to pixel size, the ASI6200 has a pixel size of 3.76 so it would be better suited to a short focal length scope, if I attach the ASI6200 to my SharpStar 15028HNT which has a focal length of 420mm at F2.8, this will give me around 1.85 Arc-Seconds per Pixel which for UK skies is an ideal figure, the ASI2400 has a bit more flexibility with the focal length of telescopes because of the larger pixel size, so whilst the ASI6200 offers a higher resolution image sensor of 62mpx, the ASI2400 offers more flexibility of a higher focal length telescope.

When I unboxed the ASI2400 I was very impressed with the quality, this was the first ZWO Camera I have ever actually seen in the flesh, the red finish matches my SharpStar 15028HNT, but one thing that I noticed straight away was the two additional USB Ports on the top of the camera which I sat and thought to myself that it would certainly help with tidying up my cables around the scope. In the box was a couple of adapters to obtain the very common 55mm back focus, two USB Cables, and a USB 3.0 cable, and the camera arrived in a very nice case too.

I removed the camera sensor cover and revealed the massive full frame sensor and compared it to the APS-C sized camera I have and was like wow, that’s a big sensor, here’s a picture of the sensor:

Size matters, the Full Frame sensor on the ASI2400MC Pro

I noticed too that there was a special tilt plate on the camera which in my opinion is a critical point, my other camera has a tilt plate that is very cumbersome to use, so after a while of looking at the sensor, I decided to start adding my ZWO filter drawer and M48 extension tubes in order to get it connected to the mount, I am using the ZWO M54 2″ Filter drawer which has a 2mm M54 to M48 adapter too, threading the filter drawer on the camera was very smooth, but I would not expect anything less than that with ZWO kit connecting to ZWO kit, here’s a picture with the filter drawer and the Optolong L-Pro 2″ filter connected to the camera:

ZWO M54 Filter Drawer connected to the ASI2400MC Pro

Once connected to the telescope, I had to find out where the camera was facing when connected at the optimal distance of 55mm as all of my image train is threaded on, once identified which direction the top of the camera sensor was facing I could rotate the focuser and then re-check the collimation with the laser before putting the camera back on and connecting the cables.

Identifying which side of the camera the top of the sensor was is so easy on this camera, there’s what looks like a black plastic button on the side of the camera, it is obviously a cover of some sort, but this also indicates which side the top of sensior is located, something I wish all camera vendors would do.

One of the first things I do when testing out a new camera is dark frames, all vendors claim they have zero amp glow, so this is always my first test, and the ASI2400 didn’t let me down, indeed there was zero amp glow and I tested with various exposure times and gain settings, here’s a 300S exposure with Gain 26 which has had a Screen Transfer Function auto stretch applied:

After connecting it all up to the telescope, and acquiring some darks, flats, and BIAS frames, and the skies were clear, it was time to put the camera under a proper test, I had set a couple of targets up, the Cygnus Loop and the Elephant’s Trunk Nebula using the Optolong L-eXtreme Narrowband filter and here are the results:

Cygnus Loop – Eastern Veil, Western Veil and Pickerings Triangle – 29x300S at Gain 26, ASI2400MC Pro on the Sharpstar15028HNT using the Optolong L-eXtreme Dual Band Filter
Elephant’s Trunk Nebula – 19x300S at Gain 26, ASI 2400MC Pro on the SharpStar 15028HNT using the Optolong L-eXtreme Dual Band Filter

So you can see the camera performed really well, stars are almost perfect in the corners (a little fine tuning required on spacing), I am hoping to get a few more clear nights over the next few days to build on the above images and really show off the performance of the ASI2400, and I can’t wait to test it out on the Iris Nebula.

Conclusion:
The ASI2400 is in my opinion an awesome piece of kit, that massive full frame sensor has the adaptability for longer focal length telescopes due to the larger pixel size, the advantage of the USB Hub built into the camera, the adjustable tilt plate on the front of the camera is the most advantageous aspect, would have saved me so much time trying to rectify tilt instead using copper shims, but also the smaller things that are equally as important like having something to identify which way round the sensor is rather than trying to figure it out with images in my opinion is what sets this apart from other similar cameras from other vendors.

If you are looking for a full frame camera and have a short focal length telescope, the ASI2400 or the ASI6200 full frame cameras will do just the job,but any longer focal length scopes, then the ASI2400 is the right choice.

Additional image taken since writing this post:

M31 – Andromeda Galaxy – 51x90S frames at Gain 0 using the Optolong L-Pro Filter, darks and flats applied

QHY268C APS-C Colour Camera Review – Part 1

As many of you know, I have been using QHY cameras for a while, but with my plan to move to a RASA telescope next year and wanting to image with a bigger sensor than the QHY183M I decided to go for a bigger sensor but moving away from Mono, the latest addition to the QHY familly is the QHY268C Photographic Version. I had been talking to the QHY team for a long time about this particular camera, and finally I have one.

The QHY268C is a once shot colour camera based on the APS-C Sized back illimunated Sony IMX571 sensor, the camera has a true 16-Bit Analog to Digital Convertor (ADC), now there are a few camera models out there using this sensor, cameras such as the ZWO ASI2600, but one thing that sets the QHY268C apart from the others is the ability to have a 75ke full well capacity which is 25ke higher than the ZWO ASI2600. In my opinion, when imaging at fast focal ratios, a higher full well is desired to protect the colour around bright stars for example.

Opening the box I was greeted with a camera that was bigger and heavier than my 183M, but then the sensor is much bigger than the 183M anyway so this would be expected, but what I did not expect is the additional items that came with the camera:

Inside the box was:

  • QHY268C Photographic Version
  • UK mains plug for 12V AC adapter
  • 12V AC adapter
  • Car 12v power cable
  • Self locking power cable
  • 1.5M USB 3.0 cable
  • Dessicant drying tube
  • Self centering adapter plate
  • M54 to M48 adapter plate
  • M54 to 2″ nose adapter
  • A range of spacers to give you from 0.5mm to 13.5mm spacing
  • Associated screws for spacing adapters

QHY cameras have come along way since I bought my QHY183M, one of the things QHY has really worked on is amp glow, my early version of the QHY183M was renowned for was amp glow, which could be removed in image calibrations, but the QHY268C produces no amp glow whatsoever, below is a dark frame of 600S taken at -13.5C and you can clearly see there is no evidence of amp glow.

Single frame 600 seconds, Gain 26, Offset 30, -13.5C – Mono (Not Debayered)

Attaching to the telescope was pretty straight forward as I had already planned the imaging train before the camera arrived, since I will be using the SharpStar 15028HNT F2.8 Paraboloid Astrograph which has an M48 thread, I decided to keep the whole imaging train at M48 except for the camera of course which has an M54 thread, so I did not actually need to use any of the adapters that came with the camera, the reason for this is because I wanted to include a filter drawer, so my image train consists of the following (from telescope to camera)

  • TSOAG9 – TS Off Axis Guider (9mm)
  • TSOAG9-M48 – TS M48 Adapter for the OAG (2.5mm)
  • TSFSLM48 – TS 2″ Filter Drawer with M48 Thread (18mm)
  • M48AbstimmA05 – TS Optics 0.5mm Aluminium spacing ring (0.5mm)
  • TSM54a-m48i – TS M48 to M54 Adapter (1.5mm)
  • QHY268C with M54 Centering Adapter (23.5mm)

As you can see with all the above I reach my desired back focus of 55mm perfectly, if I was not going to be using a filter drawer (For my Optolong L-Pro and L-eXtreme filters), I would probably have stuck with the spacers that came with the camera. Below is a picture of the camera successfully connected to the telescope.

As far as settings go, after speaking with QHY on this at great length, I will be imaging in Mode 0 (Photographic mode) to avail of the massive 75ke full well, offset I will leave at 30, but Gain I will use two different settings, I will use Gain 0 for most bright objects with the L-Pro filter, but for the L-eXtreme, I’ll probably set a gain level of 26, luckily with SGPro I can set the gain level per object. From a cooling perspective I always image at -20C, one thing I have noticed is that this camera cools to exactly -35C below ambient, I tested this when the ambient temperature was 20.10 degrees, and the camera cooled down to -14.9C, it was always 25C lower until the ambient dropped below 15C and the camera remained at my setting of -20C.

The build quality of the camera is as expected having owned a QHY183M, one thing I did notice is that the fan in the QHY268C is much quieter than the 183M. Technical Details of the camera:

CameraQHY268CQHY183M
Image SensorSony IMX571Sony IMX183
Sensor SizeAPS-C1″
IlluminationBack IlluminatedBack Illuminated
Pixel Size3.76um2.4um
Effective Image26mpx20mpx
Full well capacity51ke
(75ke in extended mode)
15.5ke
ADC16-Bit12-Bit
Image Buffer Memory1GB/2GB128MB
Max Cooling Delta-35C-40C
Weight1006g650g

I can’t wait to get imaging with this camera, I have a very aggresive target list for this year in both RGB and Narrowband with the Optolong L-eXtreme filter, I will write part two of the review once I have some actual imaging data. Time to build my dark library.

The source to the halo around bright stars

When I moved to the Sky-Watcher Quattro telescope I noticed some bizzare halo’s around bright stars in my images, this was evident in both my Atik 383L+ CCD Camera as well as my QHY183M ColdMOS Camera when using the Quattro 8-CF at F4, if you browse my galleries you will see what I mean, and it was more noticable in my Narrowband images. Below is one of my recent images where you can see the halo around Magnitude 3.9 star 15 Mon in the Christmas Tree Cluster / NGC2264.

I contacted Baader back in February 2019 since all of my filters were Baader, and I noticed that the Halo was present in all of my filters but significantly less in Red, but more prevalent in Narrowband filters, so the logical cause would be the filters. Baader immediately dismissed this to be the fault of their filters and suggested that my Coma Corrector be the root cause.

Not convinced that the Coma Corrector was causing the issue, I did some research online and came across a brilliant page on the Astronomik website where they claim to have resolved the majority of the Halo issue, and after reading the following line from the page I was convinced the filters were my issue:

In recent years very fast optical systems have become popular for imaging. The energy in a filter induced halo grows exponentially as the f-ratio decreases. Additional to this, the smaller the FWHM band pass of the filter, the stronger the halo.

The above line described my issue perfectly so I mentioned this to Baader who again dismissed the possibility of it being their filters and again put the blame firmly to my optical train. Again not happy, I contacted Astronomik and Eric emailed me back very promptly and offered to send me out one of their 6nm Ha filters to test. A few days ago the filter arrived and I was able to perform some testing against the Baader filter also for comparison on the same star.

Since the star in my image above was of magnitude 3.9, I wanted to find something similar, so I found star Alhaud VI and proceeded to obtain 15x300S Exposures for each filter, and here are the results:

Astronomik 6nm HA filter, 15x300S with Darks and Flats applied
Baader 7nm Ha filter, 15x300S with Darks and Flats applied

So as you can see the Baader filter shows a high amount of Halo around the bright star and the Astronomik filter does not, now if this was something to do with the rest of the optical train there would be evidence in the Astronomik filter also.

Now I agree there will be some reflection in the optical train, all that glass in the coma corrector, the glass on the camera etc, so I thought I would have a look at both images in a bit more detail, zoomed in on the stars there is what appears to be a slight halo in the same place on both images:

Astronomik 6nm Ha Filter
Baader 7nm Ha Filter

So both filters show the Inner Halo which in my opinion would not be visible in an image, but again clearly the Baader filter has some reflection issues happening as you can clearly see two additional Halos. The interesting thing about all three Halos is that the central one visible in both filters has no relationship to the distances between the other two in the Baader, however the two outer Halos on the baader are the same distance apart as the middle halo is from the star, so clearly this is some sort of reflection.

Conclusion:
Astronomik have done a fantastic job at eliminating Halo artifacts around bright stars, clearly the Baader filters are causing major Halo artifacts because if this was the optical train then it would be evident in the Astronimik filters also, I suspect that the Baader filters are not optimised for faster focal ratio imaging systems. I have provided this information to Baader and await a response from them.

Good job Astronomik Filters

M101 / NGC 5457 – Pinwheel Galaxy in RGB

M101 / NGC5457 or most commonly known as the Pinwheel Galaxy is a face on spiral galaxy in Ursa Major and has a distance of around 21 million light years from Earth.

The QHY183M picks up quite a lot of the Ha detail in this galaxy without me having to image separate Ha Filter data

Image Details:
101x150S in R
101x150S in G
101x150S in B

Total Capture time: 12.6 Hours

Acquisition Dates: Feb. 27, 2019, March 29, 2019, March 30, 2019, April 1, 2019, April 11, 2019, April 12, 2019, April 14, 2019

All frames had 101 Darks and Flats applied

Equipment Details:
Imaging Camera: Qhyccd 183M Mono ColdMOS Camera at -20C
Imaging Scope: Sky-Watcher Quattro 8″ F4 Imaging Newtonian
Guide Camera: Qhyccd QHY5L-II
Guide Scope: Sky-Watcher Finder Scope
Mount: Sky-Watcher EQ8 Pro
Focuser: Primalucelab ROBO Focuser
FIlterwheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium RGB
Power and USB Control: Pegasus Astro USB Ultimate Hub Pro
Acquisition Software: Main-Sequence Software Inc. Sequence Generator Pro
Processing Software: PixInsight 1.8.6

NGC4565 – Needle Galaxy in RGB

The Needle Galaxy is located int he constellation of Coma Berencies and is an edge on spiral galaxy at a distance of 30-50 million light years from earth

Image Details:
101x150S in R
101x150S in G
101x150S in B

Total Capture time: 12.6 Hours

Acquisition Dates: Jan. 28, 2019, Feb. 3, 2019, Feb. 25, 2019, Feb. 26, 2019, Feb. 27, 2019, March 26, 2019, March 29, 2019, March 30, 2019, April 1, 2019

Equipment Details:
Imaging Camera: Qhyccd 183M Mono ColdMOS Camera at -20C
Imaging Scope: Sky-Watcher Quattro 8″ F4 Imaging Newtonian
Guide Camera: Qhyccd QHY5L-II
Guide Scope: Sky-Watcher Finder Scope
Mount: Sky-Watcher EQ8 Pro
Focuser: Primalucelab ROBO Focuser
FIlterwheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium RGB
Power and USB Control: Pegasus Astro USB Ultimate Hub Pro
Acquisition Software: Main-Sequence Software Inc. Sequence Generator Pro
Processing Software: PixInsight 1.8.6

M78 / NGC 2068 in RGB

This is the first time I have ever imaged this object, I will re-visit next year when I will image at F2.8 with a wider field of view using a keller reducer.

Since this object is in the southern area of sky, I am limited by trees and the house on the data I can capture in a single night

Image Details:
101x150S – Red
101x150S – Green
101x150S – Blue

101 Darks, Flats and Dark Flats

Image Acquisition Dates: Jan. 1, 2019, Jan. 2, 2019, Jan. 8, 2019, Jan. 9, 2019, Jan. 27, 2019, Jan. 28, 2019, Jan. 30, 2019, Feb. 10, 2019, Feb. 20, 2019, Feb. 23, 2019, Feb. 24, 2019, Feb. 25, 2019

Equipment Used:
Imaging Camera: Qhyccd 183M Mono ColdMOS Camera at -20C
Imaging Scope: Sky-Watcher Quattro 8″ F4 Imaging Newtonian
Guide Camera: Qhyccd QHY5L-II
Guide Scope: Sky-Watcher Finder Scope
Mount: Sky-Watcher EQ8 Pro
Focuser: Primalucelab ROBO Focuser
FIlterwheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium RGB and Ha
Power and USB Control: Pegasus Astro USB Ultimate Hub Pro
Acquisition Software: Main-Sequence Software Inc. Sequence Generator Pro
Processing Software: PixInsight 1.8.6

IC36 Y Cas Nebula in SHO

Located in the constellation of Cassiopeia this rather feint nebula is illuminated by a very bright Magnitude 2.15 star Navi

Image Details:
101x300S in SII – Red Channel
101x300S in Ha – Green Channel
101x300S in OIII – Blue Channel

Total integration time: 25.2 Hours

101 Darks, Flats and Dark Flats applied

Acquisition Dates: Oct. 27, 2018, Dec. 13, 2018, Dec. 27, 2018, Jan. 1, 2019, Jan. 2, 2019, Jan. 4, 2019, Jan. 8, 2019, Jan. 9, 2019, Jan. 11, 2019, Jan. 18, 2019, Jan. 20, 2019, Jan. 23, 2019, Jan. 27, 2019, Jan. 28, 2019, Jan. 30, 2019

Equipment Details:
Imaging Camera: Qhyccd 183M Mono ColdMOS Camera at -20C
Imaging Scope: Sky-Watcher Quattro 8″ F4 Imaging Newtonian
Guide Camera: Qhyccd QHY5L-II
Guide Scope: Sky-Watcher Finder Scope
Mount: Sky-Watcher EQ8 Pro
Focuser: Primalucelab ROBO Focuser
FIlterwheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium Ha, SII and OIII
Power and USB Control: Pegasus Astro USB Ultimate Hub Pro
Acquisition Software: Main-Sequence Software Inc. Sequence Generator Pro
Processing Software: PixInsight 1.8.6

IC5146 / Cocoon Nebula in HaRGB

This is my first time ever imaging this target, and like the Crescent Nebula and Pelican Nebula I am limited to a 2.5 hour window per night to acquire data due to trees / house getting in the way, luckily I managed to get a lot of Ha data on this subject to blend this into the RGB image which smoothed out the lack of data for RGB somewhat, I would have liked to have got more RGB Data and I may re-image this with longer exposures on RGB next time also

Cocoon Nebula in HaRGB
Cocoon Nebula in HaRGB with PIxInsight 2x Drizzle

Image Details:
56x150S in R
56x150S in G
66x150S in B
101x300S in Ha

Acquisition Dates: Sept. 25, 2018, Sept. 27, 2018, Sept. 29, 2018, Oct. 20, 2018, Oct. 22, 2018, Oct. 26, 2018, Oct. 28, 2018, Oct. 29, 2018, Nov. 14, 2018, Nov. 17, 2018, Nov. 18, 2018, Nov. 30, 2018, Dec. 7, 2018, Dec. 9, 2018, Dec. 12, 2018, Dec. 13, 2018, Dec. 27, 2018, Jan. 4, 2019

All frames had 101 Darks and Flats applied, the Ha layer was blended using the new NBRGB Script in PixInsight 1.8.6, the more zoomed in picture is of the same data but with a 2x drizzle applied then cropped

Equipment Details:
Imaging Camera: Qhyccd 183M Mono ColdMOS Camera at -20C
Imaging Scope: Sky-Watcher Quattro 8″ F4 Imaging Newtonian
Guide Camera: Qhyccd QHY5L-II
Guide Scope: Sky-Watcher Finder Scope
Mount: Sky-Watcher EQ8 Pro
Focuser: Primalucelab ROBO Focuser
FIlterwheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium RGB and Ha
Power and USB Control: Pegasus Astro USB Ultimate Hub Pro
Acquisition Software: Main-Sequence Software Inc. Sequence Generator Pro
Processing Software: PixInsight 1.8.6

Flickr Link: https://www.flickr.com/…/465843…/in/album-72157688487449350/

AstroBin Link: https://www.astrobin.com/384658/

NGC6888 – Crescent Nebula in SHO Narrowband

This object is a little tricker for me since I only have a 3-3.5 hour window per evening due to trees and the house blocking my view, this is also the first image that I used the drizzle function within PixInsight to be able to provide a detailed up close version of the image, I was very happy to have captured the brown “Globules” within the nebula to

Crescent Nebula in SHO Narrowband
Same object but with a 2x drizzle function in PixInsight applied

Image Details:
Red Channel – SII Data – 89x300S
Green Channel – Ha Data – 64x300S
Blue Channel – OIII Data – 109x300S

101 Darks, Flats and BIAS Frames used 

Equipment Used:-
Imaging Camera: QHY183M Mono ColdMOS Camera at -20C
Imaging Scope: Skywatcher Quattro 8″ F4 Newtonian
Guide Scope: Skywatcher Finder Scope
Guide Camera: QHY5L-II
Mount: Skywatcher EQ8 Pro GEM Mount
Focuser: PrimaluceLabs ROBO Focuser
Filterwheel: StarlightXpress 7x36mm EFW
Filters: Baader 7nm Ha, SII and OIII
Acquision Software: Main Sequence Software Sequence Generator Pro
Processing Software: Pixinsight 1.8.5

Pegasus Astro Ultimate PowerBox

I spent a lot of time looking at PowerBoxes/USB Controllers, the late Per Frejvall had developed a very nice Remote USB Hub but of course with the passing of Per, these are no longer available. I looked at two hubs, the HitechAstro Mount Hub Pro abnd the one I settled for was the Pegasus Astro Ultimate PowerBox.

Unboxing the PowerBox I was pleased with the build quality, they even ship mounting brackets for you to be able to mount it onto your setup, here’s an image of mine mounted on top of my Sky-Watcher Quattro:

Pegasus Astro Ultimate PowerBox on Imaging Setup

I loaded up the software onto the observatory PC and again pleasantly surprised at how easy it was to get started and configure the names of the powered devices connected as well as names for each of the dew heaters, in the following image you can see my power connected devices and my dew heater for my guider camera:

Screenshot of Control Software

I configured the software to automatically power my devices the moment the unit is switched on, so what do I have connected to the PowerBox?

  • QHY5L-II Guide Camera
  • StarlightXpress USB Filterwheel
  • PrimaluceLabs ROBO Focuser
  • EQ8 Pro Mount PC-Direct Cable

I didn’t connect my QHY183M at the moment as I discovered that during image download it seemed to cause a timeout on the QHY5L-II Camera, I have raised a ticket with Pegasus Astro on this one. From a Power perspective, I only have my QHY183M and my Rear Fan assembly/heater connected as I currently do not have the power cable to connect directly to the hub for the EQ8 Pro (On Order). There is also a temperature sensor for the ultimate version, which works well as an interface for Sequence Generator Pro and my Auto Focuser routines.

I have been using the Hub now for a good few months, I am pretty happy with it, am I totally happy you might ask, well to be honest there’s a couple of niggly things that I have emailed Pegasus Astro about (awaiting a response):

  • Voltage. I am running 13.8V regulated bench power supply capable of delivering up to 15A which is powering the hub, however when devices such as the camera, dew heater, fan assembly are all running, the voltage level drops down to around 12V according to the software, I would not expect this to do so, I would expect it to remain 13.8V. My EQ8 Pro mount is powered by the same supply (but not through the hub currently) and during slew the voltage in the software does not change, so it’s obviously something being caluclated within the hub somewhere.
  • Issue with USB3 Camera (QHY183M) is still outstanding
  • When you set the power to the dew heater for example I always run it at 170, however when the software restarts you have to manually go and set this again
  • Ability to reboot or “Disconnect” a specific USB Port remotely would have been nice.

The main reason I wanted something like this was the ability to reboot the hub remotely, with standard USB Hubs this is not possible, as above, I would love to have a bit more granularity on this and have it on a per USB port but it works well for me right now.