Tag Archives: Quattro

IC5146 / Cocoon Nebula in HaRGB

This is my first time ever imaging this target, and like the Crescent Nebula and Pelican Nebula I am limited to a 2.5 hour window per night to acquire data due to trees / house getting in the way, luckily I managed to get a lot of Ha data on this subject to blend this into the RGB image which smoothed out the lack of data for RGB somewhat, I would have liked to have got more RGB Data and I may re-image this with longer exposures on RGB next time also

Cocoon Nebula in HaRGB
Cocoon Nebula in HaRGB with PIxInsight 2x Drizzle

Image Details:
56x150S in R
56x150S in G
66x150S in B
101x300S in Ha

Acquisition Dates: Sept. 25, 2018, Sept. 27, 2018, Sept. 29, 2018, Oct. 20, 2018, Oct. 22, 2018, Oct. 26, 2018, Oct. 28, 2018, Oct. 29, 2018, Nov. 14, 2018, Nov. 17, 2018, Nov. 18, 2018, Nov. 30, 2018, Dec. 7, 2018, Dec. 9, 2018, Dec. 12, 2018, Dec. 13, 2018, Dec. 27, 2018, Jan. 4, 2019

All frames had 101 Darks and Flats applied, the Ha layer was blended using the new NBRGB Script in PixInsight 1.8.6, the more zoomed in picture is of the same data but with a 2x drizzle applied then cropped

Equipment Details:
Imaging Camera: Qhyccd 183M Mono ColdMOS Camera at -20C
Imaging Scope: Sky-Watcher Quattro 8″ F4 Imaging Newtonian
Guide Camera: Qhyccd QHY5L-II
Guide Scope: Sky-Watcher Finder Scope
Mount: Sky-Watcher EQ8 Pro
Focuser: Primalucelab ROBO Focuser
FIlterwheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium RGB and Ha
Power and USB Control: Pegasus Astro USB Ultimate Hub Pro
Acquisition Software: Main-Sequence Software Inc. Sequence Generator Pro
Processing Software: PixInsight 1.8.6

Flickr Link: https://www.flickr.com/…/465843…/in/album-72157688487449350/

AstroBin Link: https://www.astrobin.com/384658/

Pegasus Astro Ultimate PowerBox

I spent a lot of time looking at PowerBoxes/USB Controllers, the late Per Frejvall had developed a very nice Remote USB Hub but of course with the passing of Per, these are no longer available. I looked at two hubs, the HitechAstro Mount Hub Pro abnd the one I settled for was the Pegasus Astro Ultimate PowerBox.

Unboxing the PowerBox I was pleased with the build quality, they even ship mounting brackets for you to be able to mount it onto your setup, here’s an image of mine mounted on top of my Sky-Watcher Quattro:

Pegasus Astro Ultimate PowerBox on Imaging Setup

I loaded up the software onto the observatory PC and again pleasantly surprised at how easy it was to get started and configure the names of the powered devices connected as well as names for each of the dew heaters, in the following image you can see my power connected devices and my dew heater for my guider camera:

Screenshot of Control Software

I configured the software to automatically power my devices the moment the unit is switched on, so what do I have connected to the PowerBox?

  • QHY5L-II Guide Camera
  • StarlightXpress USB Filterwheel
  • PrimaluceLabs ROBO Focuser
  • EQ8 Pro Mount PC-Direct Cable

I didn’t connect my QHY183M at the moment as I discovered that during image download it seemed to cause a timeout on the QHY5L-II Camera, I have raised a ticket with Pegasus Astro on this one. From a Power perspective, I only have my QHY183M and my Rear Fan assembly/heater connected as I currently do not have the power cable to connect directly to the hub for the EQ8 Pro (On Order). There is also a temperature sensor for the ultimate version, which works well as an interface for Sequence Generator Pro and my Auto Focuser routines.

I have been using the Hub now for a good few months, I am pretty happy with it, am I totally happy you might ask, well to be honest there’s a couple of niggly things that I have emailed Pegasus Astro about (awaiting a response):

  • Voltage. I am running 13.8V regulated bench power supply capable of delivering up to 15A which is powering the hub, however when devices such as the camera, dew heater, fan assembly are all running, the voltage level drops down to around 12V according to the software, I would not expect this to do so, I would expect it to remain 13.8V. My EQ8 Pro mount is powered by the same supply (but not through the hub currently) and during slew the voltage in the software does not change, so it’s obviously something being caluclated within the hub somewhere.
  • Issue with USB3 Camera (QHY183M) is still outstanding
  • When you set the power to the dew heater for example I always run it at 170, however when the software restarts you have to manually go and set this again
  • Ability to reboot or “Disconnect” a specific USB Port remotely would have been nice.

The main reason I wanted something like this was the ability to reboot the hub remotely, with standard USB Hubs this is not possible, as above, I would love to have a bit more granularity on this and have it on a per USB port but it works well for me right now.


M51 – Whirlpool Galaxy in LRGB

Another Image that I have previously imaged with the Atik Camera, again demonstrating a different resolution obviously showing off a bit more detail, here’s the image previously:

Equipment Used:
Imaging Scope: Sky-Watcher Quattro 8″ F4 Imaging Newtonian
Imaging Camera: Qhyccd 183M 20mpx ColdMOS Camera at -20C
Guide Scope: Sky-Watcher Finder Scope
Guide Camera: Qhyccd QHY5L-II
Mount: Sky-Watcher EQ8-Pro GEM Goto Mount
Filterwheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium 36mm LRGB Filters

Software:
Image Acquisition: Main Sequence Software SGPro 3
Guiding: PHD2
Image Processing: PixInsight

Target Details:
Name: M51 / NGC5194 / Whirlpool Galaxy
Constellation:Canes Venatici
RA: 13h 29m 53.00s
Dec: 47° 11′ 51.10″
Distance from Earth: >23 Million Light Years

Image Details:
Luminance: 101×150 Second Exposures
Red: 85×150 Second Exposures
Green: 85×150 Second Exposures
Blue: 85×150 Second Exposures
Total Exposure Time: 14.83 Hours

Acquisition Dates: 6 Apr 2018, 19/20/21 Apr 2018, 5/6/7/8/9 May 2018

 

 

 

Leo Triplet in LRGB

This is not the first time I have imaged this trio of trespassers, I have imaged them before on the same scope but with my previous Atik 383L+ CCD Imager, so again similar to M81 and M82, you can clearly see the difference in resolution the new camera offers, here’s the previous image taken from my previous post here:

Equipment Used:
Imaging Scope: Sky-Watcher Quattro 8″ F4 Imaging Newtonian
Imaging Camera: Qhyccd 183M 20mpx ColdMOS Camera at -20C
Guide Scope: Sky-Watcher Finder Scope
Guide Camera: Qhyccd QHY5L-II
Mount: Sky-Watcher EQ8-Pro GEM Goto Mount
Filterwheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium 36mm LRGB Filters

Software:
Image Acquisition: Main Sequence Software SGPro 3
Guiding: PHD2
Image Processing: PixInsight

Image Details:
Luminance: 101×150 Second Exposures
Red: 101×150 Second Exposures
Green: 101×150 Second Exposures
Blue: 101×150 Second Exposures
Acquisition Dates: 18/19/20/21 Apr 2018,  4/5/6/7/8/9 May 2018

Total Exposure Time: 16.83 Hours

Target Details: Leo Triplet
Constellation: Leo
RA: 11h 19m 36.15s
Dec: 13° 17′ 2.90″
Distance from Earth: 35 Million Light Years
Galaxies: M65 (Top Right), M66 (Bottom Right) and NGC3628 (Bottom Left) also known as The Hamburger Galaxy or Sarah’s Galaxy

M81 and M82 Bodes Galaxy and Cigar Galaxy in LHaRGB

After much waiting, I finally have the RGB Data to go with the luminance layer, a new learning curve was the HDR Compose process in PixInsight, I used this to include the 300S Exposures I had previously that were burning out the core.

Equipment Used:
Imaging Camera: Qhyccd 183M Back Illuminated ColdMOS Camera at -20C
Imaging Scope: Sky-Watcher 8″ Quattro F4
Mount: Sky-Watcher EQ8 Pro
Guide Camera: Qhyccd QHY5L-II
Guide Scope: Sky-Watcher 90×50 Finder
Filter Wheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium LRGB + 7nm Ha
Image Acquisition: Main Sequence Software SGPro
Image Processing: PixInsight

Image Details:
101x150S in LRGB, Total 16.83 Hours
25x300S in LRGB, Total 8.33 Hours
25x600S in Ha, Total 4.16 Hours
Total exposure time: 29.32 Hours
BIAS, Darks and Flats subtracted
Target: M81 and M82 in Ursa Major
Acquisition Dates: Feb. 11, 2018,  Feb. 12, 2018,  Feb. 16, 2018,  Feb. 23, 2018,  Feb. 24, 2018,  March 13, 2018,  March 14, 2018,  March 15, 2018,  March 16, 2018,  March 19, 2018,  March 20, 2018

M97 / NGC3587 – Owl Nebula in LHaRGB

I have imaged this before in the same frame as the Surfboard Galaxy, however the 0.62 Arcseconds Per Pixel the Qhyccd 183M gives me on my Sky-Watcher Quattro 8″ F4 gives me a much higher resolution image, so here it is, the Owl Nebula in the constellation of Ursa Major at a distance of 2030 Light years from Earth

Gear:
Imaging Scope: Sky-Watcher Quattro 8″ F4 Imaging Newtonian
Imaging Camera: Qhyccd 183M 20mpx ColdMOS Camera at -20C and DSO Gain
Mount: Sky-Watcher EQ8 Pro
Guide Camera: Qhyccd QHY5L-II Mono
Guide Scope: Sky-Watcher 50×90 Finder Scope
Filter Wheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium 36mm RGB
Coma Corrector: Sky-Watcher Aplanatic Coma Corrector
Image Acquisition: Main Sequence Software SGPro
Image Processing: PixInsight

Image Details:
Target: M97/NGC3587 – Owl Nebula
Constelation: Ursa Major
Red: 27x300S
Green: 27x300S
Blue: 27x300S
Ha: 25x600S
Darks: 51x300S
Flats: 101
Bias: 251 converted to SuperBIAS and deducted from Flats
Imaging Dates: Feb. 12, 2018,  Feb. 16, 2018,  Feb. 24, 2018,  Feb. 25, 2018

PixInsight Image processing workflow:
1. Calibrated against darks and Bias Subtracted Flats
2. Star Alignment for all RGB and Ha Frames
3. Least noise frame from each colour chosen as Normalization Frame and Dynamic Background Extraction Performed
4. Normalization of all frames
5. Stacking of frames and generation of drizle data (for larger quality image in future)
6. Performed LinearFit using Red stacked image as reference for RGB Frames
7. Performed DynamicCrop on all channels and Ha
8. Performed MultiMedianTransformation to reduce background noise
9. Performed SCNR to remove excessive green in image
10. Stretched the image using HistogramTransformation
11. Performed an Unsharp Mask on RGB and HA Data
12. Performed an ATWT on the Background
11. Merged the Ha Data using the HaRVB-AIP Script in PixInsight
12. Performed a CurvesTransformation to bring out the star colour

IC434 – Horsehead Nebula in LRGB

My first RGB Image from the Qhyccd 183M 20mpx Back Illuminated ColdMOS Camera, so here’s what I hope is one of many images taken with this awesome camera

Gear:
Imaging Scope: Sky-Watcher Quattro 8″ F4 Imaging Newtonian
Imaging Camera: Qhyccd 183M 20mpx ColdMOS Camera at -20C and DSO Gain
Mount: Sky-Watcher EQ8 Pro
Guide Camera: Qhyccd QHY5L-II Mono
Guide Scope: Sky-Watcher 50×90 Finder Scope
Filter Wheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium 36mm RGB
Coma Corrector: Sky-Watcher Aplanatic Coma Corrector
Image Acquisition: Main Sequence Software SGPro
Image Processing: PixInsight

Image Details:
Target: IC434 – Horsehead Nebula
Constelation: Orion
Red: 19x300S
Green: 19x300S
Blue: 19x300S
Darks: 51x300S
Flats: 101
Bias: 251 converted to SuperBIAS and deducted from Flats

Data acquired on: Feb. 9, 2018,  Feb. 11, 2018,  Feb. 15, 2018

PixInsight Image processing workflow:
1. Calibrated against darks and Bias Subtracted Flats
2. Star Alignment
3. Least noise frame from each colour chosen as Normalization Frame and Dynamic Background Extraction Performed
4. Normalization of all frames
5. Stacking of frames and generation of drizle data (for larger quality image in future)
6. Performed LinearFit using Red stacked image as reference
7. Performed MultiMedianTransformation to reduce background noise
8. Performed SCNR to remove excessive green in image
9. Stretched the image using HistogramTransformation
10. Performed a CurvesTransformation to bring out the star colour

Right now I have not performed any Sharpening of the image, nor have I added the Ha data to this image, I’ll post an updated image when I get round to doing that

M97 and M108 – Owl Nebula and Surfboard Galaxy in LRGB

M97 and M108

The Owl Nebula (also known as Messier 97, M97 or NGC 3587) is a planetary nebula located approximately 2,030 light years away in the constellation Ursa Major.  It was discovered by French astronomer Pierre Méchain on February 16, 1781

Messier 108 (also known as NGC 3556) is a barred spiral galaxy in the constellation Ursa Major. It was discovered by Pierre Méchain in 1781 or 1782. From the perspective of the Earth, this galaxy is seen almost edge-on.

The image consists of the following
23x180S – Red
23x180S – Green
23x180S – Blue
25x180S – Luminance

25 Darks, 25 Flats and 25 BIAS frames have also been applied

Equipment Used:-
Imaging Scope: Sky-Watcher Quattro Series 8-CF F4 Imaging Newtonian
Flattener: Sky-Watcher Aplanatic Coma Corrector
Imaging Camera: Atik Cameras 383L+ Mono CCD -20C
Guide Scope: Celestron Telescopes C80ED Reftractor
Guide Camera: Qhyccd QHY5L-II
Mount: Sky-Watcher EQ8 Pro
Filterwheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium 36mm Unmounted LRGB
Image Capture: Main Sequence Software SGPro
Image Stacking: Maxim-DL
Image Processing: PixInsight

Leo Triplet of Galaxies

Leo Triplet In LRGB (above) and LRGB+HA (below)

The Leo Triplet consists of three galaxies at a distance of around 35 million light years, M65 (top right), M66 (bottom right) and NGC3628 (left).  I have always aimed at imaging the triplet since I started imaging but never got around to it.

M65 (NGC 3623) and M66 (NGC 3627) are classed as intermiediate spiral galaxies and NGC3628 is also known as the Hamburger Galaxy or Sarah’s Galaxy and is classed as an Unbarred Spiral Galaxy.

The image consists of:-
29x300S of Luminance
14x300S Red, Green and Blue
15x600S of 7nm HA in the LRGB+HA Image
25 Darks and flats subtracted from all frames

Equipment Details:
Imaging Telescope: Sky-Watcher Quattro 8-CF F4 Imaging Newtonian
Imaging Camera: Atik Cameras 383L+ Mono CCD
Coma Corrector: Sky-Watcher Aplanatic Coma Corrector
Guide Camera: Qhyccd QHY5L-II
Guide Scoope: Celestron Telescopes C80ED Refractor
Mount: Sky-Watcher EQ8 Pro
Filter Wheel: Starlight Xpress Ltd 7x36mm USB EFW
Filters: Baader Planetarium LRGB + 7NM HA

Image Aquisition: Main Sequence Software SGPro
Image Pre-Processing and STacking: Maxim-DL
Post Processing: PixInsight

In my opinion, there’s only a subtle difference between the LRGB and LRGBHA images, personally I preffer the LRGB Version, the data was captured over multiple nights since the beginning of 2017 but in total gives 5.91 Hours on the LRGB Image and 8.41 Hours for the LRGB+HA Image

NGC2264 – Cone Nebula in SHO Narrowband

My latest image, I feel like I need more SII and OIII Data though to be perfectly honest, I captured quite a lot of dust even with narrowband mainly due to the high amount of HA frames I suspect, well here it is

Image Details:
27x 600S in 7nm HA
18x 600S in 7nm OIII
18x 600S in 7nm SII

25 Darks and Flats subtracted from lights

Data was acquired on the following dates: 18th, 19th, 20th and 21st January 2017, 13th and 18th February 2017

Equipment Used:
Imaging Scope: Sky-Watcher​ Quattro 8-CF Imaging Newtonian @F4 with the Skywatcher Aplanatic Coma Corrector
Imaging Camera: Atik Cameras​ 383L+ Mono CCD Cooled to -20C
Guide Scope: Celestron Telescopes​ C80ED Refractor
Guide Camera: Qhyccd​ QHY5L-II Mono
Mount: Sky-Watcher EQ8 Pro
Filter Wheel: Starlight Xpress Ltd​ 7x36mm EFW
Filters: Baader Planetarium​ 7nm HA, OIII and SII 36mm Unmounted
Image Acquisition: Main Sequence Software​ SGPro
Stacking and Combining: Maxim-DL
Processing: PixInsight​