Tag Archives: StarlightXpress

SharpStar 15028HNT

After months of trying to get my trusty Sky-Watcher Quattro F4 to work with the ASA 0.73x reducer I decided to go all in on an F2.8 astrograph. After doing some research I stumbled across the SharpStar 15028HNT F2.8 Hyperboloid Newtonian Reflector from my local supplier 365Astronomy.

After toying with the idea and speaking to my good friend Nick from Altair Astro and with the idea of going back to a refractor, I decided that I could not go back to slower than F4 and I wanted something that in essence would work with a bigger sensor than my QHY183M, and the Sharpstar looked like it could work for me, so I placed my order with Zoltan from 365Astronomy and collected it the following day.

Unboxing the scope, I was like a young child at christmas, the scope came with a very sturdy protective hard case and removing the scope out of the case you could immediately feel that a lot of time and effort had gone into producing the 15028HNT.

Aperture: 150mm
Focal Length: 420mm
Focal Ratio: F2.8
Weight: 6kg
Tube Material: Carbon Fiber

With the scope unboxed I started to fit my equipment onto the scope. In order to fit my Sesto Senso I had to rotate the focuser 90 degrees clockwise due to the telescope mounting rings, this is when I noticed an isue that one of the grub screws on the focuser would not tighten and I needed to stop the backlash, fortunately there’s another grub screw on the other side that tightened and stopped the backlash.

Before I attached my imaging equipment, I had to ensure that the telescope was collimated, so I stumbled across the collimation guide which after speaking with my good friend Terry Hancock over at Grand Mesa Observatory who was also evaluating the same scope, we both agreed that the colimation guide wasn’t very well written as it mentioned nothing about collimating the primary. One thing that it mentioned is to remove the corrector, Sharpstar include a tool for you to remove the mounting plate and corrector, but here is a word of advice……..remove this when the telescope is cold, take that advice from someone who tried to remove it whilst it was warm!

I performed a laser collimation with my Concenter Eyepiece to check the secondary, and then a laser to check the primary, now the collimation guide says to remove the corrector, I have done validation with both the corrector removed and the corrector in place, and it made no difference whatsoever, so my opinion is to leave the corrector in place.

With the scope closely collimated, I mounted my StarlightXpress Filterwheel and Camera which with the 15028HNT is an M48 thread for the gear to screw onto.

I will post some images as soon as I have completed some, the weather has been pretty poor (probably because I bought a new scope), but the frames I have got so far are very sharp, pinpoint and I can honestly say I have never seen images come directly off the camera so sharp.

My field of view with the QHY183M is around 1.21 Arcsec/Pixel which gives me a FOV or around 1.81°x1.2° and I love the difraction spikes being at 45 degrees compared to the 90 degrees on the skywatcher and I already have a pretty full target list for this scope ready to go this season.

Apart from the couple of product issues I have experienced (Grub screw on focuser and tube clamp thumbscrew being threaded) I am extremely happy with the scope, it is performing really well and here are a couple of work in progress images that I have started

Dark Shark Nebula Moscaic Panel 1 – 51x300S in Red, 25x300S in Green and Blue
Elephant’s Trunk – 51x300S in 6nm Ha
M45 – Mosaic Panel 1 – 12x150S in R, G and B

After a few weeks, the telescope has held collimation very well, I have not had to perform any re-collimation, I will re-evaluate this in the much colder months of winter.

I am so happy with the scope that I am actually considering a second one for an OSC Camera with a bigger sensor.

StarlightXpress Lodestar X2

I was lucky enough that Terry from StarlightXpress sent me a Lodestar X2 for me to test to see how well it performed against my existing guider camera, so it only seemed fair that I provide my feedback via an equipment review. Many who know me know I have been using a QHY5L-II camera as a guide camera for a few years now but after seeing a few of my fellow astrophotographers using the Lodestar cameras it seemed silly not to try one out.

In comparison to the QHY5L-II the Lodestar X2 is a true CCD camera and not a CMOS camera, so immediately this would yield some higher sensitivity in what stars can be selected. One thing that is immediately noticable between the cameras is the Lodestar X2 is longer than the length of the QHY5L-II.

Just to add some more comparisons:

QHY5L-IILodestar X2
SensorAptima MT9M034Sony ICX829
Sensor TypeCMOSCCD
Sensor Size6.66mmx5.32mm6.47mmx4.81mm
Pixel Size3.75um8.2umx8.4um
MPX1.2mpx0.4mpx
QE74%77%
Length54mm85mm
Weight45g50g
Cost (27 Aug 2019)£175£378

The first time I used the Lodestar X2, I was shocked at how many stars were in the field of view, for the same 2 second exposure I usually guide at there was a lot of stars to choose from, far more than I could see with the QHY5L-II, there is probably a number of reasons for this, higher sensitivity of the CCD Sensor, slightly higher QE, but also the FOV, with the QHY5L-II on my 8″ Quattro with a 0.73x reducer it would yield a field of view of 0.47°x0.35°, the Lodestar X2 on the other hand would yield a field of view of around 0.6°x0.48°.

Since I use PHD2 for guiding one thing that was immediately apparent was the built in driver for StarlightXpress cameras, I asked Terry which would be the best to use, he said either, it makes no difference, so I tested this and he was right, the in built driver and ASCOM driver produced the exact same result, I remember specifically with the QHY5L-II that QHY recommend you do not use the in built driver and always use the ASCOM driver. When firing up the Lodestar X2 in PHD2 I built my dark frame library in order for me to see how good the ICX829 was for noise, so I compared the 2 second exposures and there was very little difference between using a dark frame library versus not using one, the QHY5L-II definitely requires a dark frame library in PHD2 that’s for sure!

My first night of guider testing seen a little bit of odd behavoiur with the Lodestar X2, since I am using the Pegasus Astro Ultimate USB Hub, I had everything connected in there, including the QHY183M which is a USB3.0 camera albeit connected to a USB 2.0 hub. When the camera was downloading the image the Lodestar would display an array of dots on the screen. Terry confirmed that it was an indication that it was dropping down to USB 1.0 speed. It turns out that when I did the same thing with the QHY5L-II as the guider camera, the QHY5L-II would actually go unresponsive according to PHD2, so I moved the imaging camera to a dedicated USB 3.0 port on the Intel NUC and never had a repeat of the issue on either camera.

PHD2 has no issues picking up and selecting a guide star, there’s plenty of stars to choose from

Conclusion
The Lodestar X2 is awesome as a guide camera, it works extremely well, very sensitive, the only drawback in my opinion is price, at over double the price of the QHY5L-II camera maybe a tad out of some folks price range.

M101 / NGC 5457 – Pinwheel Galaxy in RGB

M101 / NGC5457 or most commonly known as the Pinwheel Galaxy is a face on spiral galaxy in Ursa Major and has a distance of around 21 million light years from Earth.

The QHY183M picks up quite a lot of the Ha detail in this galaxy without me having to image separate Ha Filter data

Image Details:
101x150S in R
101x150S in G
101x150S in B

Total Capture time: 12.6 Hours

Acquisition Dates: Feb. 27, 2019, March 29, 2019, March 30, 2019, April 1, 2019, April 11, 2019, April 12, 2019, April 14, 2019

All frames had 101 Darks and Flats applied

Equipment Details:
Imaging Camera: Qhyccd 183M Mono ColdMOS Camera at -20C
Imaging Scope: Sky-Watcher Quattro 8″ F4 Imaging Newtonian
Guide Camera: Qhyccd QHY5L-II
Guide Scope: Sky-Watcher Finder Scope
Mount: Sky-Watcher EQ8 Pro
Focuser: Primalucelab ROBO Focuser
FIlterwheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium RGB
Power and USB Control: Pegasus Astro USB Ultimate Hub Pro
Acquisition Software: Main-Sequence Software Inc. Sequence Generator Pro
Processing Software: PixInsight 1.8.6

NGC 2264 – Cone Nebula and Christmas Tree Cluster in HaRGB

Located in the constellation of Moneceros, this image shows both the Cone Nebula and the Christmas Tree Cluster, located around 2600 light years from earth the Cone Nebula being an emmision Nebula

Image Details:

101x150S in R
101x150S in G
101x150S in B
101x300S in Ha

Total capture time: 21 Hours

Acquisition Dates: Jan. 9, 2019, Jan. 31, 2019, Feb. 3, 2019, Feb. 14, 2019, Feb. 15, 2019, Feb. 23, 2019, Feb. 24, 2019, Feb. 25, 2019, Feb. 26, 2019, Feb. 27, 2019, Feb. 28, 2019, March 24, 2019, March 25, 2019, March 26, 2019, March 28, 2019, March 29, 2019

The NBRGB Script in PixInsight was used to blend the Ha into the RGB Image

101 Darks, Flats and Flat Darks were used in the frame calibration

Equipment Details:
Imaging Camera: Qhyccd 183M Mono ColdMOS Camera at -20C
Imaging Scope: Sky-Watcher Quattro 8″ F4 Imaging Newtonian
Guide Camera: Qhyccd QHY5L-II
Guide Scope: Sky-Watcher Finder Scope
Mount: Sky-Watcher EQ8 Pro
Focuser: Primalucelab ROBO Focuser
Filterwheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium RGB and Ha
Power and USB Control: Pegasus Astro USB Ultimate Hub Pro
Acquisition Software: Main-Sequence Software Inc. Sequence Generator Pro
Processing Software: PixInsight 1.8.6

IC36 Y Cas Nebula in SHO

Located in the constellation of Cassiopeia this rather feint nebula is illuminated by a very bright Magnitude 2.15 star Navi

Image Details:
101x300S in SII – Red Channel
101x300S in Ha – Green Channel
101x300S in OIII – Blue Channel

Total integration time: 25.2 Hours

101 Darks, Flats and Dark Flats applied

Acquisition Dates: Oct. 27, 2018, Dec. 13, 2018, Dec. 27, 2018, Jan. 1, 2019, Jan. 2, 2019, Jan. 4, 2019, Jan. 8, 2019, Jan. 9, 2019, Jan. 11, 2019, Jan. 18, 2019, Jan. 20, 2019, Jan. 23, 2019, Jan. 27, 2019, Jan. 28, 2019, Jan. 30, 2019

Equipment Details:
Imaging Camera: Qhyccd 183M Mono ColdMOS Camera at -20C
Imaging Scope: Sky-Watcher Quattro 8″ F4 Imaging Newtonian
Guide Camera: Qhyccd QHY5L-II
Guide Scope: Sky-Watcher Finder Scope
Mount: Sky-Watcher EQ8 Pro
Focuser: Primalucelab ROBO Focuser
FIlterwheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium Ha, SII and OIII
Power and USB Control: Pegasus Astro USB Ultimate Hub Pro
Acquisition Software: Main-Sequence Software Inc. Sequence Generator Pro
Processing Software: PixInsight 1.8.6

IC5146 / Cocoon Nebula in HaRGB

This is my first time ever imaging this target, and like the Crescent Nebula and Pelican Nebula I am limited to a 2.5 hour window per night to acquire data due to trees / house getting in the way, luckily I managed to get a lot of Ha data on this subject to blend this into the RGB image which smoothed out the lack of data for RGB somewhat, I would have liked to have got more RGB Data and I may re-image this with longer exposures on RGB next time also

Cocoon Nebula in HaRGB
Cocoon Nebula in HaRGB with PIxInsight 2x Drizzle

Image Details:
56x150S in R
56x150S in G
66x150S in B
101x300S in Ha

Acquisition Dates: Sept. 25, 2018, Sept. 27, 2018, Sept. 29, 2018, Oct. 20, 2018, Oct. 22, 2018, Oct. 26, 2018, Oct. 28, 2018, Oct. 29, 2018, Nov. 14, 2018, Nov. 17, 2018, Nov. 18, 2018, Nov. 30, 2018, Dec. 7, 2018, Dec. 9, 2018, Dec. 12, 2018, Dec. 13, 2018, Dec. 27, 2018, Jan. 4, 2019

All frames had 101 Darks and Flats applied, the Ha layer was blended using the new NBRGB Script in PixInsight 1.8.6, the more zoomed in picture is of the same data but with a 2x drizzle applied then cropped

Equipment Details:
Imaging Camera: Qhyccd 183M Mono ColdMOS Camera at -20C
Imaging Scope: Sky-Watcher Quattro 8″ F4 Imaging Newtonian
Guide Camera: Qhyccd QHY5L-II
Guide Scope: Sky-Watcher Finder Scope
Mount: Sky-Watcher EQ8 Pro
Focuser: Primalucelab ROBO Focuser
FIlterwheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium RGB and Ha
Power and USB Control: Pegasus Astro USB Ultimate Hub Pro
Acquisition Software: Main-Sequence Software Inc. Sequence Generator Pro
Processing Software: PixInsight 1.8.6

Flickr Link: https://www.flickr.com/…/465843…/in/album-72157688487449350/

AstroBin Link: https://www.astrobin.com/384658/

NGC6888 – Crescent Nebula in SHO Narrowband

This object is a little tricker for me since I only have a 3-3.5 hour window per evening due to trees and the house blocking my view, this is also the first image that I used the drizzle function within PixInsight to be able to provide a detailed up close version of the image, I was very happy to have captured the brown “Globules” within the nebula to

Crescent Nebula in SHO Narrowband
Same object but with a 2x drizzle function in PixInsight applied

Image Details:
Red Channel – SII Data – 89x300S
Green Channel – Ha Data – 64x300S
Blue Channel – OIII Data – 109x300S

101 Darks, Flats and BIAS Frames used 

Equipment Used:-
Imaging Camera: QHY183M Mono ColdMOS Camera at -20C
Imaging Scope: Skywatcher Quattro 8″ F4 Newtonian
Guide Scope: Skywatcher Finder Scope
Guide Camera: QHY5L-II
Mount: Skywatcher EQ8 Pro GEM Mount
Focuser: PrimaluceLabs ROBO Focuser
Filterwheel: StarlightXpress 7x36mm EFW
Filters: Baader 7nm Ha, SII and OIII
Acquision Software: Main Sequence Software Sequence Generator Pro
Processing Software: Pixinsight 1.8.5

Pegasus Astro Ultimate PowerBox

I spent a lot of time looking at PowerBoxes/USB Controllers, the late Per Frejvall had developed a very nice Remote USB Hub but of course with the passing of Per, these are no longer available. I looked at two hubs, the HitechAstro Mount Hub Pro abnd the one I settled for was the Pegasus Astro Ultimate PowerBox.

Unboxing the PowerBox I was pleased with the build quality, they even ship mounting brackets for you to be able to mount it onto your setup, here’s an image of mine mounted on top of my Sky-Watcher Quattro:

Pegasus Astro Ultimate PowerBox on Imaging Setup

I loaded up the software onto the observatory PC and again pleasantly surprised at how easy it was to get started and configure the names of the powered devices connected as well as names for each of the dew heaters, in the following image you can see my power connected devices and my dew heater for my guider camera:

Screenshot of Control Software

I configured the software to automatically power my devices the moment the unit is switched on, so what do I have connected to the PowerBox?

  • QHY5L-II Guide Camera
  • StarlightXpress USB Filterwheel
  • PrimaluceLabs ROBO Focuser
  • EQ8 Pro Mount PC-Direct Cable

I didn’t connect my QHY183M at the moment as I discovered that during image download it seemed to cause a timeout on the QHY5L-II Camera, I have raised a ticket with Pegasus Astro on this one. From a Power perspective, I only have my QHY183M and my Rear Fan assembly/heater connected as I currently do not have the power cable to connect directly to the hub for the EQ8 Pro (On Order). There is also a temperature sensor for the ultimate version, which works well as an interface for Sequence Generator Pro and my Auto Focuser routines.

I have been using the Hub now for a good few months, I am pretty happy with it, am I totally happy you might ask, well to be honest there’s a couple of niggly things that I have emailed Pegasus Astro about (awaiting a response):

  • Voltage. I am running 13.8V regulated bench power supply capable of delivering up to 15A which is powering the hub, however when devices such as the camera, dew heater, fan assembly are all running, the voltage level drops down to around 12V according to the software, I would not expect this to do so, I would expect it to remain 13.8V. My EQ8 Pro mount is powered by the same supply (but not through the hub currently) and during slew the voltage in the software does not change, so it’s obviously something being caluclated within the hub somewhere.
  • Issue with USB3 Camera (QHY183M) is still outstanding
  • When you set the power to the dew heater for example I always run it at 170, however when the software restarts you have to manually go and set this again
  • Ability to reboot or “Disconnect” a specific USB Port remotely would have been nice.

The main reason I wanted something like this was the ability to reboot the hub remotely, with standard USB Hubs this is not possible, as above, I would love to have a bit more granularity on this and have it on a per USB port but it works well for me right now.


M51 – Whirlpool Galaxy in LRGB

Another Image that I have previously imaged with the Atik Camera, again demonstrating a different resolution obviously showing off a bit more detail, here’s the image previously:

Equipment Used:
Imaging Scope: Sky-Watcher Quattro 8″ F4 Imaging Newtonian
Imaging Camera: Qhyccd 183M 20mpx ColdMOS Camera at -20C
Guide Scope: Sky-Watcher Finder Scope
Guide Camera: Qhyccd QHY5L-II
Mount: Sky-Watcher EQ8-Pro GEM Goto Mount
Filterwheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium 36mm LRGB Filters

Software:
Image Acquisition: Main Sequence Software SGPro 3
Guiding: PHD2
Image Processing: PixInsight

Target Details:
Name: M51 / NGC5194 / Whirlpool Galaxy
Constellation:Canes Venatici
RA: 13h 29m 53.00s
Dec: 47° 11′ 51.10″
Distance from Earth: >23 Million Light Years

Image Details:
Luminance: 101×150 Second Exposures
Red: 85×150 Second Exposures
Green: 85×150 Second Exposures
Blue: 85×150 Second Exposures
Total Exposure Time: 14.83 Hours

Acquisition Dates: 6 Apr 2018, 19/20/21 Apr 2018, 5/6/7/8/9 May 2018

 

 

 

Leo Triplet in LRGB

This is not the first time I have imaged this trio of trespassers, I have imaged them before on the same scope but with my previous Atik 383L+ CCD Imager, so again similar to M81 and M82, you can clearly see the difference in resolution the new camera offers, here’s the previous image taken from my previous post here:

Equipment Used:
Imaging Scope: Sky-Watcher Quattro 8″ F4 Imaging Newtonian
Imaging Camera: Qhyccd 183M 20mpx ColdMOS Camera at -20C
Guide Scope: Sky-Watcher Finder Scope
Guide Camera: Qhyccd QHY5L-II
Mount: Sky-Watcher EQ8-Pro GEM Goto Mount
Filterwheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium 36mm LRGB Filters

Software:
Image Acquisition: Main Sequence Software SGPro 3
Guiding: PHD2
Image Processing: PixInsight

Image Details:
Luminance: 101×150 Second Exposures
Red: 101×150 Second Exposures
Green: 101×150 Second Exposures
Blue: 101×150 Second Exposures
Acquisition Dates: 18/19/20/21 Apr 2018,  4/5/6/7/8/9 May 2018

Total Exposure Time: 16.83 Hours

Target Details: Leo Triplet
Constellation: Leo
RA: 11h 19m 36.15s
Dec: 13° 17′ 2.90″
Distance from Earth: 35 Million Light Years
Galaxies: M65 (Top Right), M66 (Bottom Right) and NGC3628 (Bottom Left) also known as The Hamburger Galaxy or Sarah’s Galaxy