NGC2264 – Cone Nebula in SHO Narrowband

My latest image, I feel like I need more SII and OIII Data though to be perfectly honest, I captured quite a lot of dust even with narrowband mainly due to the high amount of HA frames I suspect, well here it is

Image Details:
27x 600S in 7nm HA
18x 600S in 7nm OIII
18x 600S in 7nm SII

25 Darks and Flats subtracted from lights

Data was acquired on the following dates: 18th, 19th, 20th and 21st January 2017, 13th and 18th February 2017

Equipment Used:
Imaging Scope: Sky-Watcher​ Quattro 8-CF Imaging Newtonian @F4 with the Skywatcher Aplanatic Coma Corrector
Imaging Camera: Atik Cameras​ 383L+ Mono CCD Cooled to -20C
Guide Scope: Celestron Telescopes​ C80ED Refractor
Guide Camera: Qhyccd​ QHY5L-II Mono
Mount: Sky-Watcher EQ8 Pro
Filter Wheel: Starlight Xpress Ltd​ 7x36mm EFW
Filters: Baader Planetarium​ 7nm HA, OIII and SII 36mm Unmounted
Image Acquisition: Main Sequence Software​ SGPro
Stacking and Combining: Maxim-DL
Processing: PixInsight​

Atik 383L+ Cooled Mono CCD Imaging Camera

After owning the Atik 383L+ Mono CCD Camera for over three years now, I would say I am definitely qualified to write a review.  I bought my camera back in 2013 when I lived in Ireland it was during the time when I transitioned from imaging with a Cooled and Modified DSLR Camera to Mono CCD Imaging.  At the time I was considering one of two cameras, the QHY8 Mono CCD and the Atik 383L+ Mono CCD, at the time the QHY was slightly cheaper but the Cooling Delta and Readout Noise was better on the Atik despite the fact that they both used the Kodak KAF8300 chip.

When I first received my camera, I was thoroughly impressed with the build quality, the red aluminium casing gave it a really professional feel to the camera and came complete with USB Cable, 12v Cigarette Power Cable and Software Media, all packaged really well, and when taking the camera out of the box, you could tell that Atik had put a lot of effort and consideration into their build quality and finish of the camera.  So far so good!

People quite often ask me how big the camera is, it just so happens that at the time I got my camera, I took a picture of the camera next to a AAA battery, just for comparison you can see that it is a fairly compact camera and at around 700g wasn’t too heavy either.

Because I couldn’t wait until my filterwheel had arrived, I wanted to test the camera functionality, so I installed all of the software onto my desktop PC and plugged the camera in.  At the time I got the camera, I was using Nebulosity to perform my image acquisition, so the first thing to do was build my dark frames at my desired temperature of -20C.  The dark frames showed very little in the way of noise which I was extremely happy with.  The installation of Drivers and  ASCOM Platform drivers all went perfectly without any problems, and Nebulosity worked well using the ASCOM Camera platform driver.

Once my filterwheel had arrived from StarlightXpress it was time to get the camera aquainted with the telescope, and at the time I was using an Astro-Tech 8 Inch Ritchey Chretien telescope on my already 3 Year Old NEQ6-Pro mount. Mating the camera to the filterwheel was relatively easy, I placed a thin cork shim onto the male thread of the filterwheel and screwed the camera on and adjusted the rotation of the filterwheel adapter to make sure the camera was at the right angle, I used the rubber shim to stop the metal to metal binding which makes it difficult to remove later, adding in the cork shim still allows it to be tightened up.

Since I had built my dark frame library, it was time to build my flat frames library, for this I used an EL Panel, one of the things I noticed was that a short exposure time of <1.0 seconds left a dark area to the lower right of the frame, after speaking with Atik they confirmed it was just the mechanical shutter, so I had to reduce the light on the EL Panel in order to increase the exposure time to get around this, other than that my flat frame library was built.

My first light for the camera was going to come from NGC7635 – Bubble Nebula in Narrowband, and whilst I must admit my imaging has come a long way since I took this picture, it is what it is and I was very happy with the results of sensitivity the camera delivered especially as this image is only 3x1800S frames for HA, OIII and SII.  Since I have had the camera, I have produced a substantial number of images to date and continue to do so using my Atik 383L+ Mono CCD Camera.

So how does Atik fair with me as a company, well it just so happens that I had to send my camera away for service due to excessive moisture causing Ice Crystals during cooling, I filed a support ticket with them and within a few days I got my camera back completely moisture free, I do not blame the camera here for the moisture, but more the fact that when I had my observatory located 15 miles away, I used to forget to switch the camera power off which would push a lot of moisture through the camera.  But the service from Atik was simply awesome.

Here’s a picture of the camera still used today attached to my F4 Quattro, I use Sequence Generator Pro for all my target acquisitions today but still using the ASCOM Camera Driver which is extremely stable

Just to recap why I am happy with the camera:

  • Build Quality
  • Size and Weight
  • Software Deployment
  • Sensitivity
  • Quietness of the camera

What could have been better?

  • Power cable – This could have been a stretchable power cable as I did run into a problem recently where the cable became snagged and it ripped the wire out of the jack plug that plugs into the camera, fortunately it didn’t damage the plug in port of the camera
  • Heated chip chamber, most cameras seem to have this now
  • Different colour options – I would have loved the camera in Blue or Green

You can see many of the images I have taken with this camera in my CCD Image Gallery Section here

 

 

Skywatcher Quattro 8-CF Imaging Newtonian

After much deliberation and conversations back and forth with Bernard at Modern Astronomy, I finally decided to go for the Skywatcher Quattro 8-CF 8” F4 Reflector, there was a number of factors that helped me reach this decision, most of it was the British weather being so unpredictable that I needed to get as many photons for my images in the shortest available time.  I was used to imaging at F7.5 that the F4 was going to give me significantly faster optics, I also opted for the Carbon Fiber version purely from a thermal expansion perspective as it was going to perform better than the steel tube version.  I also opted for the 8” as the Native focal length of 800mm suited me perfectly, and I plan on getting the Keller reducer to bring it down to 560mm @ F2.8.

Setup and Collimation
When I received my telescope and optically matched Aplanatic Coma Corrector, I was impressed with the build quality of the scope itself, internal baffles to boost contrast as well as eliminate stray light, and the focuser is pretty sturdy for a stock focuser, and quite easily handles the weight of my CCD and Filterwheel.  I mounted the telescope next to my Guide scope on my Skywatcher EQ8, I wish they had provided a Losmandy plate with the telescope, but the Vixen style bar still worked out well.  After balancing the scopes on the mount I was ready to check the collimation, for this I used my Farpoint Collimation Kit, firstly the laser to ensure it hits the centre spot of the primary, and the laser return reached the centre point of the laser collimator itself, the adjustments required were very minor.  After this I verified the collimation with the Farpoint Cheshire and it verified that the collimation was correct, only thing left to do was a star test, for this I used a 10mm Eyepiece and a fairly bright defocused star, the star was spot on, I could see all the concentric rings.  I then proceeded to perform the same star test with the CCD and the Aplanatic Corrector to verify, which of course it did.

Scope Details:
Focal Length: 800mm
Apperture: 8 Inch
Focal Ratio: F4
Tube Composition: Carbon Fiber
Focuser: 2″ Dual Speed Linear Power Focuser

First light
My first target for 2016 is the Iris Nebula, my first set of frames came through and for a 5 minute exposure I was impressed with how much data I had collected, data that would have taken over 15 minutes to collect on the F7.5 refractor I now use as a guide scope, I managed to finish a target off within a few days of imaging rather than over a multitude of nights

I have also not had to re-collimate the scope or adjust the focuser on the scope over the few weeks I have had it, so overall I am above and beyond happy with my decision and I am now able to image targets in a shorter timeframe which in the UK you have to grab every clear sky you can

A few months on
I have had to re-collimate the scope 0 times, even after removing the primary mirror assemply for cleaning, the focuser is still rock solid and holds the camera gear extremely well.   I have made an addition to the scope, I have added a fan system to the rear of the primary mirror, the fan also has some nichrome wire which allows the air being blown around the primary to be just above the dew point which prevents dew forming on the primary and believe it or not the secondary also, even in high humidity sessions.

Build Quality: Extremely pleased with the build quality of the scope, even the focuser is sturdy and holds all of my gear really well

Collimation: Extremely easy with the right tools, it has required no further collimation in the months that I have now owned the scope

Improvements: Could have come with a fan assembly, most of the other F4 scopes from other vendors do

Conclusion
After months of usage, I have produced some really good images in short timeframes due to the fast F4 ratio, I am looking forward to using this scope again next season with 3nm NarrowBand filters and possibly the Keller Reducer to bring it down to F2.8

 

 

NGC7635 – Bubble Nebula in HSHO

Since my previous LRGB+HA image which can be seen here I managed to capture more data in the SII and OIII areas.  The bubble nebula has always fascinated me, it lies between 7100 and 11000 light years from Earth and is regarded as an Emission Nebula, inside the bubble there is a central star which is thought to be greating an expansion based on the massive mollecular cloud surrounding the star itself.

The data for this image was captured over a number of nights from the South East of the UK:

Aug. 16, 2016
Aug. 17, 2016
Oct. 2, 2016
Dec. 22, 2016
Dec. 26, 2016
Dec. 28, 2016
Jan. 2, 2017
Jan. 19, 2017
Jan. 20, 2017

Equipment Details-
Mount: Sky-Watcher EQ8 Pro
Imaging Scope: Sky-Watcher Quattro 8-CF F4 Imagine Newtonian
Imaging Camera: Atik Cameras 383L+ Mono CCD Cooled to -20C
Guide Scope: Celestron Telescopes C80ED Refractor
Guide Camera: Qhyccd QHY5L-II
Filter Wheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium 7nm HA, OIII and SII 36mm Unmounted
Stacking and Combining: Maxim-DL
Processing: PixInsight

I am really getting to understand PixInsight for image processing and the results have excelled the image quality fromt he same set of data

M81 and M82 Galaxies in LRGB+HA

By far my biggest challenging project to date, maybe not by image acquisition, but by processing.  The above two galaxies caused me lots of grief when trying to process, they just did not come out right with my normal method of processing, so I turned to PixInsight to process them, and I anm so glad I did, the whole learning curve put me back to almost the same level I was at in 2008, but the steep learning curve paid off

M81 and M82 Galaxies in Ursa Major

Image Details
29x300S in LRGB
17x600S in 7nm HA
25 Darks and 25 Flats applied

Equipment Details:
Mount: Sky-Watcher EQ8 Pro
Imaging Scope: Sky-Watcher Quattro 8-CF 8″ Newtonian F4
Imaging Camera: Atik Cameras 383L+
Guide Scope: Celestron Telescopes C80ED
Guide Camera: Qhyccd QHY5L-II
Filter Wheel: Starlight Xpress Ltd 7x36mm
Filters: Baader Planetarium LRGB+HA 36mm Unmounted

Proccessing:
Stacking and Combining: Maxim DL
Processing: PixInsight 1.8 x64

The images were taken over a number of nights since the beginning of december and totals 12.5 Hours of exposure time

M45 – Pleiades 15mpx Image

I finally got round to creating my first mosaic, and no better target than M45 Pleiades Cluster.  Since my Field of View on the 8″ Quattro would not allow me to get the whole cluster in, I opted to do two images and use a tool called Image Composite Editor to stick together the two mosaic panels.

The Pleiades cluster is also referred to as the Seven Sisters and it located in the constellation Taurus.

The Image consists of
14x300S LRGB for Pane 1 and 2, so in total 9.3 Hours worth of exposure time

25 Darks and 25 Flats

Equipment Used:
Mount: Sky-Watcher EQ8 Pro
Imaging Scope: Sky-Watcher Quattro 8-CF @ F4
Imaging Camera: Atik Cameras 383L+ Cooled to -20C
Filterwheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium 36mm unmounted LRGB
Guide Scope: Celestron Telescopes C80ED
Guide Camera: Qhyccd QHY5L-II

Software Used:
Image Acquisition: Main Sequence Software Sequence Generator Pro
Pre-Processing / Stacking: Maxim-DL
Post Processing: Photoshop CS5 and Noise Ninja

You can see on the left of the image that there is a feint blue dount, this is common with reflectors with extremely bright stars and is probably caused by 25 Tau/Alcyone Star which has an absolute magnitude of -2.61 or a regular magnitude of 2.85 which makes it the brightest star in the M45 cluster

M33 – Triangulum Galaxy

My first galaxy with the F4 Quattro, M33 – Triangulum Galaxy.  The galaxy is located approximately 3 million light years away in the constellation of Triangulum, it is the third largest member in a cluster of galaxies which includes our own and the famous M31 Andromeda Galaxy

The image was the first taken with my Nichrome wire in front of the Mirror Fan to prevent dew forming on the Primary…..And it worked!!!

Image Details:
21x300S in LRGB
16x600S in HA

The HA was added as a Lighten Layer to the Red Channel, all frames have 25 Flats and 25 Darks applied

Equipment Used:
Mount: Sky-Watcher EQ8 Pro
Imaging Scope: Sky-Watcher Quattro 8-CF @ F4
Imaging Camera: Atik Cameras 383L+ Mono Cooled to -20C
Filter Wheel: Starlight Xpress Ltd 7x36mm unmounted USB Filter Wheel
Filters: Baader Planetarium 36mm LRGB + 7nm HA
Guide Scope: Celestron Telescopes C80ED
Guide Camera: Qhyccd QHY5L-II

Software Used:
Image Acquisition: Main Sequence Software Sequence Generator Pro
Image Stacking and Combining: Maxim-DL
Post Processing: PixInsight

NGC281 – Pacman Nebula in Hubble Palette Narrowband

NGC281 – Pacman Nebula

NGC 281 is located in the constellation of Cassiopeia and part of the Perseus Spiral Arm. It includes the open cluster IC 1590, the multiple star HD 5005, and several Bok globules. Colloquially, NGC 281 is also known as the Pacman Nebula for its resemblance to the video game character.

The Image consists of
21x600S in SII – Mapped to Red
21x600S in HA – Mapped to Green
21x600S in OIII – Mapped to Blue
25 Darks and Flats

The HA Channel was also used as a Luminosity layer

Equipment Used
Mount: Sky-Watcher EQ8 Pro
Imaging Camera: Atik Cameras 383L+ Mono CCD Cooled to -20C
Imaging Scope: Sky-Watcher Quattro 8-CF 8″ F4 Newtonian
Coma Corrector: Sky-Watcher Aplanatic Coma Corrector
Guide Camera: Qhyccd QHY5L-II
Guide Scope: Celestron Telescopes C80ED Refractor
Filter Wheel: Starlight Xpress Ltd 7x36mm EFW
Filters: Baader Planetarium 7nm HA, OIII and SII 36mm unmounted

Software Used:
Image Acquisition: Main Sequence Software Sequence Generator Pro
Guiding: PHD2
Stacking and Pre-Processing: Maxim-DL
Post Processing: Photoshop, Noise Ninja

NGC6960 – Witch’s Broom in HA+OIII+OIII

Here’s my NGC6960 – Witch’s Broom Nebula in HOO

Image Details
15x600S HA as Lighten Layer in Red Channel
15x600S OIII as Lighten Layer in Both Green and Blue Channel

Equipment Used:

Imaging Scope: Sky-Watcher Quattro 8-CF 8″ F4 Newtonian
Guide Scope: Celestron Telescopes C80ED Refractor
Mount: Sky-Watcher EQ8 Pro
Imaging Camera: Atik Cameras 383L+ Mono CCD Cooled to -20C
Guide Camera: Qhyccd QHY5L-II

Image Acquisition: Main Sequence Software Sequence Generator Pro
Guide Software: PHD2

Processing:
Pre-Processing: Maxim-DL for Stacking, Darks and Flats Subtracting and Alignment of Colour Planes
Post Processing: PixInsight

NGC6960 – Witch’s Broom Nebula in Hubble Palette Narrowband

NGC6960 - Witches Broom
NGC6960 – Witches Broom

How Fitting for Halloween……My latest image – NGC6960 – Witch’s Broom in Hubble Palette Narrowband

Commonly referred to as the Witch’s Broom or the Western Veil of the larger Veil Nebula, this lies approximately 1470 Light years away.

In my opinion this is not an easy subject to image, and even more difficult to process, the image details are as follows:

15x600S in 7nm HA
15x600S in 7nm SII
15x600S in 7nm OIII
25 Darks
25 Flats

The HA was also used as a Luminance Layer

Equipment Used:
Imaging Scope: Sky-Watcher Quattro 8-CF 8″ F4 Newtonian
Guide Scope: Celestron Telescopes C80ED Refractor
Mount: Sky-Watcher EQ8 Pro
Imaging Camera: Atik Cameras 383L+ Mono CCD Cooled to -20C
Guide Camera: Qhyccd QHY5L-II
Image Acquisition: Main Sequence Software Sequence Generator Pro
Guide Software: PHD2

Processing:
Pre-Processing: Maxim-DL for STacking, Darks and Flats Subtracting and Alignment of Colour Planes
Post Processing: Photoshop CS5, Noise Ninja